Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2024_24_2_a1, author = {J. E. N\'apoles and P. M. Guzm\'an and B. Bayraktar}, title = {New integral inequalities in the class of functions $(h,m)$-convex}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {173--183}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a1/} }
TY - JOUR AU - J. E. Nápoles AU - P. M. Guzmán AU - B. Bayraktar TI - New integral inequalities in the class of functions $(h,m)$-convex JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2024 SP - 173 EP - 183 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a1/ LA - en ID - ISU_2024_24_2_a1 ER -
%0 Journal Article %A J. E. Nápoles %A P. M. Guzmán %A B. Bayraktar %T New integral inequalities in the class of functions $(h,m)$-convex %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2024 %P 173-183 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a1/ %G en %F ISU_2024_24_2_a1
J. E. Nápoles; P. M. Guzmán; B. Bayraktar. New integral inequalities in the class of functions $(h,m)$-convex. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 2, pp. 173-183. http://geodesic.mathdoc.fr/item/ISU_2024_24_2_a1/
[1] Nápoles J. E., Rabossi F., Samaniego A. D., Convex functions: Ariadne's thread or Sharlotte's spiderweb?, Advanced Mathematical Models Applications, 5:2 (2020), 176–191
[2] Alomari M., Hussain S., “Two inequalities of Simpson type for quasi-convex functions and applications”, Applied Mathematics E-Notes, 11 (2011), 110–117 | MR | Zbl
[3] Set E., Özdemir E., Sarıkaya M. Z., “On new inequalities of Simpson's type for quasi-convex functions with applications”, Tamkang Journal of Mathematics, 43:3 (2012), 357–364 | DOI | MR | Zbl
[4] Bayraktar B., “Some integral inequalities for functions whose absolute values of the third derivative is concave and $r$-convex”, Turkish Journal of Inequalities, 4:2 (2020), 59–78
[5] Bayraktar B., Nápoles J. E., Rabossi F., “On generalizations of integral inequalities”, Problemy Analiza – Issues of Analysis, 11(29):2 (2022), 3–23 | DOI | MR | Zbl
[6] Dragomir S. S., Agarwal R. P., Cerone P., “On Simpson's inequality and applications”, Journal of Inequalities and Applications, 5:6 (2000), 533–579 | DOI | MR | Zbl
[7] Liu Z., “An inequality of Simpson type”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 461:2059 (2005), 2155–2158 | DOI | MR | Zbl
[8] Hussain S., Qaisar S., “Generalizations of Simpson's type inequalities through preinvexity and prequasiinvexity”, Punjab University Journal of Mathematics, 46:2 (2014), 1–9 | MR | Zbl
[9] Park J., “Hermite – Hadamard type and Simpson's type inequalities for the decreasing $(\alpha ,m)$-geometrically convex functions”, Applied Mathematical Sciences, 61–64 (2014), 3181–3195 | DOI | MR
[10] Sarıkaya M. Z., Set E., Özdemir M. E., “On new inequalities of Simpson's type for $s$-convex functions”, Computers Mathematics with Applications, 60:8 (2010), 2191–2199 | DOI | MR | Zbl
[11] Desalegn H., Mijena J. B., Nwaeze E. R., Abdi T., “Simpson's type inequalities for $s$-convex functions via a generalized proportional fractional integral”, Foundations, 2 (2022), 607–616 | DOI
[12] Hua J., Xi B.-Y., Qi F., “Some new inequalities of Simpson type for strongly $s$-convex functions”, Afrika Matematika, 26 (2015), 741–752 | DOI | MR | Zbl
[13] Kashuri A., Meftah B., Mohammed P. O., “Some weighted Simpson type inequalities for differentiable $s$-convex functions and their applications”, Journal of Fractional Calculus and Nonlinear Systems, 1:1 (2021), 75–94 | DOI | MR
[14] Du T. S., Li Y. J., Yang Z. Q., “A generalization of Simpson's inequality via differentiable mapping using extended $(s,m)$-convex functions”, Applied Mathematics and Computation, 293 (2017), 358–369 | DOI | MR | Zbl
[15] Du T. S., Liao J. G., Li Y. J., “Properties and integral inequalities of Hadamard – Simpson type for the generalized $(s,m)$-preinvex functions”, Journal of Nonlinear Sciences and Applications, 9:5 (2016), 3112–3126 | DOI | MR | Zbl
[16] Luo C., Du T., “Generalized Simpson type inequalities involving Riemann – Liouville fractional integrals and their applications”, Filomat, 34:3 (2020), 751–760 | DOI | MR | Zbl
[17] Hsu K. C., Hwang S. R., Tseng K. L., “Some extended Simpson type inequalities and applications”, Bulletin of the Iranian Mathematical Society, 43:2 (2017), 409–425 | MR | Zbl
[18] Ujević N., “Double integral inequalities of Simpson type and applications”, Journal of Applied Mathematics and Computing, 14 (2004), 213–223 | DOI | MR
[19] Bayraktar B., Nápoles J. E., “Hermite – Hadamard weighted integral inequalities for $(h,m)$-convex modified functions”, Fractional Differential Calculus, 12:2 (2022), 235–248 | DOI | MR | Zbl
[20] Bayraktar B., Nápoles J. E., “New generalized integral inequalities via $(h,m)$-convex modified functions”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 60 (2022), 3–15 | DOI | MR | Zbl
[21] Bayraktar B., Nápoles J. E., “Integral inequalities for mappings whose derivatives are $(h,m,s)$-convex modified of second type via Katugampola integrals”, Annals of the University of Craiova, Mathematics and Computer Science Series, 49:2 (2022), 371–383 | DOI | MR | Zbl
[22] Rainville E. D., Special Functions, Macmillan Co, New York, 1960, 365 pp. | MR | Zbl
[23] Díaz R., Pariguan E., “On hypergeometric functions and Pochhammer $k$-symbol”, Divulgaciones Matematicas, 15:2 (2007), 179–192 | DOI | MR | Zbl
[24] Mubeen S., Habibullah G. M., “$k$-fractional integrals and application”, International Journal of Contemporary Mathematical Sciences, 7:2 (2012), 89–94 | MR | Zbl
[25] Akkurt A. E., Yildirim M., Yildirim H., “On some integral inequalities for $(k,h)$-Riemann – Liouville fractional integral”, New Trends in Mathematical Sciences, 4:1 (2016), 138–146 | DOI | MR
[26] Jarad F., Abdeljawad T., Shah T., “On the weighted fractional operators of a function with respect to another function”, Fractals, 28:8 (2020), 2040011 | DOI | Zbl
[27] Sarikaya M. Z., Ertugral F., “On the generalized Hermite – Hadamard inequalities”, Annals of the University of Craiova, Mathematics and Computer Science Series, 47:1 (2020), 193–213 | DOI | MR | Zbl
[28] Jarad F., Ugurlu U., Abdeljawad T., Baleanu D., “On a new class of fractional operators”, Advances in Difference Equations, 2017:247 (2017), 1–16 | DOI | MR
[29] Khan T. U., Khan M. A., “Generalized conformable fractional integral operators”, Journal of Computational and Applied Mathematics, 346 (2019), 378–389 | DOI | MR | Zbl
[30] Özdemir M. E., Kavurmaci H., Yildiz C., “Fractional integral inequalities via $s$-convex functions”, Turkish Journal of Analysis and Number Theory, 5:1 (2017), 18–22 | DOI
[31] Dragomir S. S., Agarwal R. P., “Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula”, Applied Mathematics Letters, 11:5 (1998), 91–95 | DOI | MR | Zbl
[32] Kirmaci U. S., Bakula M. K., Özdemir M. E., Pecaric J., “Hadamard-type inequalities for $s$-convex functions”, Applied Mathematics and Computation, 193:1 (2007), 26–35 | DOI | MR | Zbl
[33] Pearce C. E. M., Pecaric J., “Inequalities for differentiable mappings with application to special means and quadrature formulae”, Applied Mathematics Letters, 13 (2000), 51–55 | DOI | MR | Zbl
[34] Hudzik H., Maligranda L., “Some remarks on $s$-convex functions”, Aequationes Mathematicae, 48:1 (1994), 100–111 | DOI | MR | Zbl
[35] Wu S., Iqbal S., Aamir M., Samraiz M., Younus A., “On some Hermite – Hadamard inequalities involving $k$-fractional operators”, Journal of Inequalities and Applications, 2021:32 (2021) | DOI | MR
[36] Aljaaidia T. A., Pachpatte D., “New generalization of reverse Minkowski's inequality for fractional integral”, Advances in the Theory of Nonlinear Analysis and its Applications, 5:1 (2021), 72–81 | DOI