Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2024_24_1_a8, author = {G. I. Mikhasev and N. D. Le}, title = {On the influence of surface stresses and inertia on the natural low-frequency vibrations of an elastic ultrathin strip-beam}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {86--96}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a8/} }
TY - JOUR AU - G. I. Mikhasev AU - N. D. Le TI - On the influence of surface stresses and inertia on the natural low-frequency vibrations of an elastic ultrathin strip-beam JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2024 SP - 86 EP - 96 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a8/ LA - ru ID - ISU_2024_24_1_a8 ER -
%0 Journal Article %A G. I. Mikhasev %A N. D. Le %T On the influence of surface stresses and inertia on the natural low-frequency vibrations of an elastic ultrathin strip-beam %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2024 %P 86-96 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a8/ %G ru %F ISU_2024_24_1_a8
G. I. Mikhasev; N. D. Le. On the influence of surface stresses and inertia on the natural low-frequency vibrations of an elastic ultrathin strip-beam. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 1, pp. 86-96. http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a8/
[1] Lavrik N. V., Sepaniak M. J., Datskos P. G., “Cantilever transducers as a platform for chemical and biological sensors”, Review of Scientific Instruments, 75 (2004), 2229–2253 | DOI
[2] Zhang Y., Khan M., Huang Y., Ryou J., Deotare P., Dupuis R., Lonċar M., “Photonic crystal nanobeam lasers”, Applied Physics Letters, 97:5 (2010), 051104 | DOI
[3] Qiao Q., Xia J., Lee C., Zhou G., “Applications of photonic crystal nanobeam cavities for sensing”, Micromachines, 9:11 (2018), 541 | DOI
[4] Cuenot S., Fretigny C., Demoustier-Champagne S., Nysten B., “Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy”, Physical Review. B, 69:16 (2004), 165410–165415 | DOI
[5] Sun C. T., Zhang H., “Size-dependent elastic moduli of platelike nanomaterials”, Journal of Applied Physics, 93 (2003), 1212–1218 | DOI
[6] Zhang H., Sun C. T., “Nanoplate model for platelike nanomaterials”, AIAA Journal, 42:10 (2004), 2002–2009 | DOI | MR
[7] Zhou L. G., Huang H., Are surfaces elastically softer or stiffer?, Applied Physics Letters, 84:11 (2004), 1940–1942 | DOI
[8] Gurtin M. E., Murdoch A. I., “Surface stress in solids”, International Journal of Solids and Structures, 14:6 (1978), 431–440 | DOI | Zbl
[9] Wang J., Huang Z., Duan H., Yu S., Feng X., Wang G., Zhang W., Wang T., “Surface stress effect in mechanics of nanostructured materials”, Acta Mechanica Solida Sinica, 24:1 (2011), 52–82 | DOI | MR
[10] Achenbach J., Wave Propagation in Elastic Solids, North Holland, Amsterdam, The Netherland, 1973, 440 pp. | MR | Zbl
[11] Eremeyev V. A., Rosi G., Naili S., “Surface/interfacial anti-plane waves in solids with surface energy”, Mechanics Research Communications, 74 (2016), 8–13 | DOI
[12] Zhu F., Pan E., Qian Z., Wang Y., “Dispersion curves, mode shapes, stresses and energies of SH and Lamb waves in layered elastic nanoplates with surface/interface effect”, International Journal of Engineering Science, 142 (2019), 170–184 | DOI | MR
[13] Mikhasev G. I., Botogova M. G., Eremeyev V. A., “Anti-plane waves in an elastic thin strip with surface energy”, Philosophical Transactions of the Royal Society, Series A: Mathematical, Physical and Engineering Sciences, 380:2231 (2022), 20210373 | DOI | MR
[14] Mikhasev G. I., Erbas B., Eremeyev V. A., “Anti-plane shear waves in an elastic strip rigidly attached to an elastic half-space”, International Journal of Engineering Science, 184 (2023), 103809 | DOI | MR
[15] Mogilevskaya S. G., Zemlyanova A. Y., Kushch V. I., “Fiber- and particle-reinforced composite materials with the Gurtin – Murdoch and Steigmann – Ogden surface energy endowed interfaces”, Applied Mechanics Reviews, 73 (2021), 1–18 | DOI
[16] Gorbushin N., Eremeyev V. A., Mishuris G., “On stress singularity near the tip of a crack with surface stresses”, International Journal of Engineering Science, 146 (2020), 103183 | DOI | MR | Zbl
[17] Lim C. W., He L. H., “Size-dependent nonlinear response of thin elastic films with nano-scale thickness”, International Journal of Mechanical Science, 46 (2004), 1715–1726 | DOI | Zbl
[18] Lu P., He L. H., Lee H. P., Lu C., “Thin plate theory including surface effects”, International Journal of Solids and Structures, 43 (2006), 4631–4647 | DOI | Zbl
[19] Lu L., Guoa X., Zhao J., “On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy”, International Journal of Engineering Science, 124 (2018), 24–40 | DOI | MR
[20] Zhou J., Lu P., Xue Y., Lu C., “A third-order plate model with surface effect based on the Gurtin – Murdoch surface elasticity”, Thin-Walled Structures, 185 (2023), 110606 | DOI
[21] Yang W., Wang S., Kang W., Yu T., Li Y., “A unified high-order model for size-dependent vibration of nanobeam based on nonlocal strain/stress gradient elasticity with surface effect”, International Journal of Engineering Science, 182 (2023), 103785 | DOI | MR
[22] Altenbach H., Eremeyev V. A., “On the shell theory on the nanoscale with surface stresses”, International Journal of Engineering Science, 49:12 (2011), 1294–1301 | DOI | MR | Zbl
[23] Altenbach H., Eremeyev V. A., Morozov N. F., “Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale”, International Journal of Engineering Science, 59 (2012), 83–89 | DOI | MR | Zbl
[24] Tovstik P. E., Tovstik T. P., “Generalized Timoshenko – Reissner models for beams and plates, strongly heterogeneous in the thickness direction”, ZAMM – Journal of Applied Mathematics and Mechanics, 97:3 (2017), 296–308 | DOI | MR
[25] Mikhasev G., Botogova M., Le N., “Flexural deformations and vibrations of a three-layer beam-strip with a stiff core and soft skins”, Progress in Continuum Mechanics, Advanced Structural Materials, 196, eds. H. Altenbach, H. Irschik, A. Porubov, Springer, Cham, 2023, 265–282 | DOI
[26] Kaplunov J., Kossovitch L., Nolde E., Dynamics of Thin Walled Elastic Bodies, Academic Press, San Diego, 1998, 226 pp. | MR | Zbl
[27] Timoshenko S., “On the correction for shear of the differential equation for transverse vibrations of prismatic bar”, Philosophical Magazine Series, 6:245 (1921), 744–746 | DOI