Free vibration frequencies of prismatic thin shells
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 1, pp. 49-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper examines the natural frequencies of prismatic thin shells, the cross-section of which is the regular polygon. Spectra of free vibration frequencies of such shells are analyzed as the number of cross-section sides increases, provided that the perimeter is preserved. The relation between fundamental frequencies of the prismatic shells with the regular polygonal cross-section and a circular cylindrical shell is discussed. For a small and large number of polygon sides analytical and asymptotic solutions are compared with numerical solutions obtained by the finite element method (COMSOL). The convergence of the numerical method is studied for the prismatic shell with a large number of facets.
@article{ISU_2024_24_1_a4,
     author = {G. T. Dzebisashvili and A. L. Smirnov and S. B. Filippov},
     title = {Free vibration frequencies of prismatic thin shells},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {49--56},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a4/}
}
TY  - JOUR
AU  - G. T. Dzebisashvili
AU  - A. L. Smirnov
AU  - S. B. Filippov
TI  - Free vibration frequencies of prismatic thin shells
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2024
SP  - 49
EP  - 56
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a4/
LA  - ru
ID  - ISU_2024_24_1_a4
ER  - 
%0 Journal Article
%A G. T. Dzebisashvili
%A A. L. Smirnov
%A S. B. Filippov
%T Free vibration frequencies of prismatic thin shells
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2024
%P 49-56
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a4/
%G ru
%F ISU_2024_24_1_a4
G. T. Dzebisashvili; A. L. Smirnov; S. B. Filippov. Free vibration frequencies of prismatic thin shells. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 1, pp. 49-56. http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a4/

[1] Filippov S. B., Haseganu E. M., Smirnov A. L., “Free vibrations of square elastic tubes with a free end”, Mechanics Research Communications, 27:4 (2000), 457–464 | DOI | Zbl

[2] Dzebisashvili G. T., “Free vibrations of cylindrical shells with the square cross-section”, Proceedings of the seminar “Computer methods in continuum mechanics” 2017–2018, St. Petersburg State University Publ., St. Petersburg, 2019, 13–29 (in Russian)

[3] Amosov A. S., “Free vibrations of a thin rectangular elastic tube”, Bulletin of St. Petersburg University. Mathematics. Mechanics. Astronomy, 2004, no. 1, 67–72 (in Russian)

[4] Chen Y., Jin G., Liu Z., “Free vibration of a thin shell structure of rectangular cross-section”, Key Engineering Materials, 486 (2011), 107–110 | DOI

[5] Dzebisashvili G. T., Filippov S. B., “Vibrations of cylindrical shells with rectangular cross-section”, Journal of Physics: Conference Series, 1479 (2020) | DOI

[6] Gonçalves R., Camotim D., “The vibration behaviour of thin-walled regular polygonal tubes”, Thin-Walled Structures, 84 (2014), 177–188 | DOI

[7] Krajcinovic D., “Vibrations of prismatic shells with hexagonal cross section”, Nuclear Engineering and Design, 22:1 (1972), 51–62 | DOI

[8] Borkovic̀ A., Kovačevic̀ S., Milašinovic̀ D. D., Radenkovic̀ G., Mijatovic̀ O., Golubovic̀-Bugarski V., “Geometric nonlinear analysis of prismatic shells using the semi-analytical finite strip method”, Thin-Walled Structures, 117 (2017), 63–88 | DOI

[9] Liang S., Chen H. L., Liang T. X., “An analytical investigation of free vibration for a thin-walled regular polygonal prismatic shell with simply supported odd/even number of sides”, Journal of Sound and Vibration, 284:1–2 (2005), 520–530 | DOI | MR

[10] Leissa A. W., Vibration of Plates, US Government Printing Office, Washington, 1969, 353 pp.

[11] Goldenweiser A. L., Lidsky V. B., Tovstik P. E., Free Vibrations of Thin Elastic Shells, Nauka, M., 1979, 384 pp. (in Russian)