On asymmetrical equilibrium states of annular plates under normal pressure
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 1, pp. 28-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

The unsymmetrical buckling of annular plates with an elastically restrained edge which are subjected to normal pressure is studied in this paper. The unsymmetric part of the solution is sought in terms of multiples of the harmonics of the angular coordinate. A numerical method is employed to obtain the lowest load value, which leads to the appearance of waves in the circumferential direction. The effect of plate geometry (ratio of inner to outer radii) and boundary on the buckling load is examined. It is shown, that for an annulus the buckling pressure and the buckling mode number decreases as the inner radius increases. It is shown that as the internal radius increases, the plate loses stability as the buckling pressure decreases, which also leads to the buckling mode number decrease.
@article{ISU_2024_24_1_a2,
     author = {S. M. Bauer and E. B. Voronkova},
     title = {On asymmetrical equilibrium states of annular plates under normal pressure},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {28--34},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a2/}
}
TY  - JOUR
AU  - S. M. Bauer
AU  - E. B. Voronkova
TI  - On asymmetrical equilibrium states of annular plates under normal pressure
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2024
SP  - 28
EP  - 34
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a2/
LA  - ru
ID  - ISU_2024_24_1_a2
ER  - 
%0 Journal Article
%A S. M. Bauer
%A E. B. Voronkova
%T On asymmetrical equilibrium states of annular plates under normal pressure
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2024
%P 28-34
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a2/
%G ru
%F ISU_2024_24_1_a2
S. M. Bauer; E. B. Voronkova. On asymmetrical equilibrium states of annular plates under normal pressure. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 1, pp. 28-34. http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a2/

[1] Panov D. Yu., Feodosiev V. I., “On the equilibrium and loss of stability of shallow shells in the case of large displacement”, Journal of Applied Mathematics and Mechanics, 12:4 (1948), 389–406 (in Russian)

[2] Feodos'ev V. I., “On a method of solution of the nonlinear problems of stability of deformable systems”, Journal of Applied Mathematics and Mechanics, 27:2 (1963), 392–404 | DOI | MR | Zbl

[3] Cheo L. S., Reiss E. L., “Unsymmetric wrinkling of circular plates”, Quarterly of Applied Mathematics, 31:1 (1973), 75–91 | DOI | Zbl

[4] Morozov N. F., “On the existence of a non-symmetric solution in the problem of large deflections of a circular plate with a symmetric load”, Izvestiya vysshikh uchebnykh zavedeniy. Matematika, 1961, no. 2, 126–129 (in Russian) | Zbl

[5] Piechocki W., “On the nonlinear theory of thin elastic spherical shells: Nonlinear partial differential equations solutions in theory of thin elastic spherical shells subjected to temperature fields and external loading”, Archiwum Mechaniki Stosowanej, 21:1 (1969), 81–102 | MR

[6] Coman C. D., Bassom A. P., “Asymptotic limits and wrinkling patterns in a pressurised shallow spherical cap”, International Journal of Non-Linear Mechanics, 81 (2016), 8–18 | DOI

[7] Coman C. D., “On the asymptotic reduction of a bifurcation equation for edge-buckling instabilities”, Acta Mechanica, 229 (2018), 1099–1109 | DOI | MR | Zbl

[8] Bauer S. M., Voronkova E. B., “On non-axisymmetric buckling modes of inhomogeneous circular plates”, Vestnik St. Petersburg University, Mathematics, 54:2 (2021), 113–118 | DOI | DOI | MR | Zbl

[9] Bauer S. M., Voronkova E. B., “On buckling behavior of inhomogeneous shallow spherical caps with elastically restrained edge”, Analysis of Shells, Plates, and Beams, Advanced Structured Materials, 134, eds. H. Altenbach, N. Chinchaladze, R. Kienzler, W. H. Müller, Springer, Cham, 2020, 65–74 | DOI | MR | Zbl

[10] Bauer S. M., Voronkova E. B., “Asymmetric buckling of heterogeneous annular plates”, Recent Approaches in the Theory of Plates and Plate-Like Structures, Advanced Structured Materials, 151, eds. S. Bauer, V. A. Eremeyev, G. I. Mikhasev, N. F. Morozov, H. Altenbach, Springer, Cham, 2022, 17–26 | DOI