Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2024_24_1_a2, author = {S. M. Bauer and E. B. Voronkova}, title = {On asymmetrical equilibrium states of annular plates under normal pressure}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {28--34}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a2/} }
TY - JOUR AU - S. M. Bauer AU - E. B. Voronkova TI - On asymmetrical equilibrium states of annular plates under normal pressure JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2024 SP - 28 EP - 34 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a2/ LA - ru ID - ISU_2024_24_1_a2 ER -
%0 Journal Article %A S. M. Bauer %A E. B. Voronkova %T On asymmetrical equilibrium states of annular plates under normal pressure %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2024 %P 28-34 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a2/ %G ru %F ISU_2024_24_1_a2
S. M. Bauer; E. B. Voronkova. On asymmetrical equilibrium states of annular plates under normal pressure. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 1, pp. 28-34. http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a2/
[1] Panov D. Yu., Feodosiev V. I., “On the equilibrium and loss of stability of shallow shells in the case of large displacement”, Journal of Applied Mathematics and Mechanics, 12:4 (1948), 389–406 (in Russian)
[2] Feodos'ev V. I., “On a method of solution of the nonlinear problems of stability of deformable systems”, Journal of Applied Mathematics and Mechanics, 27:2 (1963), 392–404 | DOI | MR | Zbl
[3] Cheo L. S., Reiss E. L., “Unsymmetric wrinkling of circular plates”, Quarterly of Applied Mathematics, 31:1 (1973), 75–91 | DOI | Zbl
[4] Morozov N. F., “On the existence of a non-symmetric solution in the problem of large deflections of a circular plate with a symmetric load”, Izvestiya vysshikh uchebnykh zavedeniy. Matematika, 1961, no. 2, 126–129 (in Russian) | Zbl
[5] Piechocki W., “On the nonlinear theory of thin elastic spherical shells: Nonlinear partial differential equations solutions in theory of thin elastic spherical shells subjected to temperature fields and external loading”, Archiwum Mechaniki Stosowanej, 21:1 (1969), 81–102 | MR
[6] Coman C. D., Bassom A. P., “Asymptotic limits and wrinkling patterns in a pressurised shallow spherical cap”, International Journal of Non-Linear Mechanics, 81 (2016), 8–18 | DOI
[7] Coman C. D., “On the asymptotic reduction of a bifurcation equation for edge-buckling instabilities”, Acta Mechanica, 229 (2018), 1099–1109 | DOI | MR | Zbl
[8] Bauer S. M., Voronkova E. B., “On non-axisymmetric buckling modes of inhomogeneous circular plates”, Vestnik St. Petersburg University, Mathematics, 54:2 (2021), 113–118 | DOI | DOI | MR | Zbl
[9] Bauer S. M., Voronkova E. B., “On buckling behavior of inhomogeneous shallow spherical caps with elastically restrained edge”, Analysis of Shells, Plates, and Beams, Advanced Structured Materials, 134, eds. H. Altenbach, N. Chinchaladze, R. Kienzler, W. H. Müller, Springer, Cham, 2020, 65–74 | DOI | MR | Zbl
[10] Bauer S. M., Voronkova E. B., “Asymmetric buckling of heterogeneous annular plates”, Recent Approaches in the Theory of Plates and Plate-Like Structures, Advanced Structured Materials, 151, eds. S. Bauer, V. A. Eremeyev, G. I. Mikhasev, N. F. Morozov, H. Altenbach, Springer, Cham, 2022, 17–26 | DOI