Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2024_24_1_a10, author = {E. V. Murashkin and Yu. N. Radayev}, title = {Two-dimensional {Nye} figures for hemitropic micropolar elastic solids}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {109--122}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a10/} }
TY - JOUR AU - E. V. Murashkin AU - Yu. N. Radayev TI - Two-dimensional Nye figures for hemitropic micropolar elastic solids JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2024 SP - 109 EP - 122 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a10/ LA - ru ID - ISU_2024_24_1_a10 ER -
%0 Journal Article %A E. V. Murashkin %A Yu. N. Radayev %T Two-dimensional Nye figures for hemitropic micropolar elastic solids %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2024 %P 109-122 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a10/ %G ru %F ISU_2024_24_1_a10
E. V. Murashkin; Yu. N. Radayev. Two-dimensional Nye figures for hemitropic micropolar elastic solids. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 1, pp. 109-122. http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a10/
[1] Neuber H., “Über Probleme der Spannungskonzentration im Cosserat – Körper”, Acta Mechanica, 2 (1966), 48–69 | DOI | MR | Zbl
[2] Neuber H., “On the general solution of linear-elastic problems in isotropic and anisotropic Cosserat continua”, Applied Mechanics, ed. H. Görtler, Springer, Berlin–Heidelberg, 1966, 153–158 | DOI
[3] Nowacki W., Theory of Micropolar Elasticity, Springer, Berlin, 1972, 285 pp. | DOI | Zbl
[4] Nowacki W., Theory of Asymmetric Elasticity, Pergamon Press, Oxford, 1986, 383 pp. | MR | Zbl
[5] Dyszlewicz J., Micropolar Theory of Elasticity, Springer, Berlin–Heidelberg, 2004, 345 pp. | DOI | MR | Zbl
[6] Murashkin E. V., Radayev Yu. N., “Covariantly constant tensors in Euclid spaces. Elements of the theory”, Vestnik I. Yakovlev Chuvach State Pedagogical University. Series: Mechanics of a Limit State, 2022, no. 2 (52), 106–117 (in Russian) | DOI | MR
[7] Murashkin E. V., Radayev Yu. N., “Covariantly constant tensors in Euclid spaces. Applications to continuum mechanics”, Vestnik I. Yakovlev Chuvach State Pedagogical University. Series: Mechanics of a Limit State, 2022, no. 2 (52), 118–127 (in Russian) | DOI | MR
[8] Radayev Yu. N., “The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 22:3 (2018), 504–517 (in Russian) | DOI | Zbl
[9] Murashkin E. V., Radayev Yu. N., “On two base natural forms of asymmetric force and couple stress tensors of potential in mechanics of hemitropic solids”, Vestnik I. Yakovlev Chuvach State Pedagogical University. Series: Mechanics of a Limit State, 2022, no. 3 (53), 86–100 (in Russian) | DOI
[10] Murashkin E. V., Radayev Yu. N., “Reducing natural forms of hemitropic energy potentials to conventional ones”, Vestnik I. Yakovlev Chuvach State Pedagogical University. Series: Mechanics of a Limit State, 2022, no. 4 (54), 108–115 (in Russian) | DOI
[11] Schouten J. A., Tensor Analysis for Physicist, Clarendon Press, Oxford, 1951, 434 pp. | MR
[12] Sokolnikoff I. S., Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua, John Wiley Sons Inc, New York, 1964, 361 pp. | MR | MR | Zbl
[13] Synge J. L., Schild A., Tensor Calculus, Dover Publication Inc., New York, 1978, 324 pp. | MR | Zbl
[14] Das A. J., Tensors: The Mathematics of Relativity Theory and Continuum Mechanics, Springer, New York, 2007, 290 pp. | DOI | MR | Zbl
[15] Gurevich G. B., Foundations of the Theory of Algebraic Invariants, Noordhoff, Groningen, 1964, 429 pp. | MR | MR | Zbl
[16] Veblen O., Thomas T. Y., “Extensions of relative tensors”, Transactions of the American Mathematical Society, 26:3 (1924), 373–377 | DOI | MR
[17] Veblen O., Invariants of Quadratic Differential Forms, Cambridge University Press, Cambridge, 1927, 114 pp.
[18] “Pseudotensor formulation of the mechanics of hemitropic micropolar media”, Problems of Strength and Plasticity, 82:4 (2020), 399–412 (in Russian) | DOI
[19] Murashkin E. V., Radayev Yu. N., “On a micropolar theory of growing solids”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 24:3 (2020), 424–444 | DOI | Zbl
[20] Kovalev V. A., Murashkin E. V., Radayev Yu. N., “On the Neuber theory of micropolar elasticity. A pseudotensor formulation”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 24:4 (2020), 752–761 | DOI | Zbl
[21] Jeffreys H., Cartesian Tensors, Cambridge University Press, Cambridge, 1931, 101 pp. | MR
[22] Nye J. F., Physical Properties of Crystals, Their Representation by Tensors and Matrices, Clarendon Press, Oxford, 1957, 322 pp. | Zbl
[23] Wooster W. A., Experimental Crystal Physics, Clarendon Press, Oxford, 1957, 116 pp.
[24] Voigt W., Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik), Springer, Fachmedien–Wiesbaden, 1966, 979 pp.
[25] Standards on Piezoelectric Crystals, Proceedings of the I.R.E., IRE, New York, 1949, 18 pp.
[26] Zheng Q. S., Spencer A. J. M., “On the canonical representations for Kronecker powers of orthogonal tensors with application to material symmetry problems”, International Journal of Engineering Science, 31:4 (1993), 617–435 | DOI | MR
[27] Rosenfeld B. A., Multidimensional Spaces, Nauka, M., 1966, 648 pp. (in Russian) | MR
[28] Radayev Yu. N., “Tensors with constant components in the constitutive equations of hemitropic micropolar solids”, Mechanics of Solids, 58:5 (2023), 1517–1527 | DOI | DOI
[29] Murashkin E. V., Radayev Yu. N., “A negative weight pseudotensor formulation of coupled hemitropic thermoelasticity”, Lobachevskii Journal of Mathematics, 44:6 (2023), 2440–2449 | DOI | MR | Zbl
[30] Radayev Yu. N., Murashkin E. V., “Generalized pseudotensor formulations of the Stokes' integral theorem”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 22:2 (2022), 205–215 | DOI | MR | Zbl
[31] Murashkin E. V., Radayev Yu. N., “On a ordering of area tensor elements orientations in a micropolar continuum immersed in an external plane space”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 25:4 (2021), 776–786 (in Russian) | DOI | Zbl
[32] Murashkin E. V., Radaev Y. N., “On theory of oriented tensor elements of area for a micropolar continuum immersed in an external plane space”, Mechanics of Solids, 57:2 (2022), 205–213 | DOI | DOI | MR | Zbl
[33] Murashkin E. V., Radayev Yu. N., “Algebraic algorithm for the systematic reduction of one-point pseudotensors to absolute tensors”, Vestnik I. Yakovlev Chuvach State Pedagogical University. Series: Mechanics of a Limit State, 2022, no. 1 (51), 17–26 (in Russian) | DOI
[34] Murashkin E. V., Radayev Yu. N., “An algebraic algorithm of pseudotensors weights eliminating and recovering”, Mechanics of Solids, 57:6 (2022), 1416–1423 | DOI | MR
[35] Murashkin E. V., Radayev Yu. N., “On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 25:3 (2021), 457–474 (in Russian) | DOI | Zbl