Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2024_24_1_a0, author = {V. A. Babeshko and S. B. Uafa and O. V. Evdokimova and O. M. Babeshko and I. S. Telyatnikov and V. S. Evdokimov}, title = {On the dynamic contact problem with two deformable stamps}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {4--13}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a0/} }
TY - JOUR AU - V. A. Babeshko AU - S. B. Uafa AU - O. V. Evdokimova AU - O. M. Babeshko AU - I. S. Telyatnikov AU - V. S. Evdokimov TI - On the dynamic contact problem with two deformable stamps JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2024 SP - 4 EP - 13 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a0/ LA - ru ID - ISU_2024_24_1_a0 ER -
%0 Journal Article %A V. A. Babeshko %A S. B. Uafa %A O. V. Evdokimova %A O. M. Babeshko %A I. S. Telyatnikov %A V. S. Evdokimov %T On the dynamic contact problem with two deformable stamps %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2024 %P 4-13 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a0/ %G ru %F ISU_2024_24_1_a0
V. A. Babeshko; S. B. Uafa; O. V. Evdokimova; O. M. Babeshko; I. S. Telyatnikov; V. S. Evdokimov. On the dynamic contact problem with two deformable stamps. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 1, pp. 4-13. http://geodesic.mathdoc.fr/item/ISU_2024_24_1_a0/
[1] Galin L. A., Contact Problems of the Theory of Elasticity and Viscoelasticity, Nauka, M., 1980, 303 pp. (in Russian) | MR
[2] Shtaerman I. Ya., Contact Problems of the Theory of Elasticity, Gostekhizdat, M., 1949, 272 pp. (in Russian) | MR
[3] Goryacheva I. G., Dobychin M. N., Contact Problems of Tribology, Mashinostroenie Publishers, M., 1988, 256 pp. (in Russian)
[4] Papangelo A., Ciavarella M., Barber J. R., “Fracture mechanics implications for apparent static friction coefficient in contact problems involving slip-weakening laws”, Proceedings of the Royal Society A (London), 471:2180 (2015), 20150271 | DOI | MR | Zbl
[5] Ciavarella M., “The generalized Cattaneo partial slip plane contact problem. I – Theory”, International Journal of Solids and Structures, 35:18 (1998), 2349–2362 | DOI | MR
[6] Ciavarella M., “The generalized Cattaneo partial slip plane contact problem. II – Examples”, International Journal of Solids and Structures, 35:18 (1998), 2363–2378 | DOI | MR
[7] Zhou S., Gao X. L., “Solutions of half-space and half-plane contact problems based on surface elasticity”, Zeitschrift für angewandte Mathematik und Physik, 64 (2013), 145–166 | DOI | MR | Zbl
[8] Guler M. A., Erdogan F., “The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings”, International Journal of Mechanical Sciences, 49:2 (2007), 161–182 | DOI
[9] Ke L.-L., Wang Y.-S., “Two-dimensional sliding frictional contact of functionally graded materials”, European Journal of Mechanics – A/Solids, 26:1 (2007), 171–188 | DOI | Zbl
[10] Almqvist A., Sahlin F., Larsson R., Glavatskih S., “On the dry elasto-plastic contact of nominally flat surfaces”, Tribology International, 40:4 (2007), 574–579 | DOI
[11] Almqvist A., An LCP solution of the linear elastic contact mechanics problem, 43216, 2013 (accessed December 1, 2023) http://www.mathworks.com/matlabcentral/fileexchange | DOI
[12] Andersson L. E., “Existence results for quasistatic contact problems with Coulomb friction”, Applied Mathematics and Optimization, 42 (2000), 169–202 | DOI | MR | Zbl
[13] Cocou M., “A class of dynamic contact problems with Coulomb friction in viscoelasticity”, Nonlinear Analysis: Real World Applications, 22 (2015), 508–519 | DOI | MR | Zbl
[14] Vorovich I. I., “Spectral properties of a boundary value problem of elasticity theory for a nonuniform band”, Doklady Akademii Nauk SSSR, 245:4 (1979), 817–820 (in Russian) | MR | Zbl
[15] Vorovich I. I., “Resonant properties of an elastic inhomogeneous strip”, Doklady Akademii Nauk SSSR, 245:5 (1979), 1076–1079 (in Russian) | MR | Zbl
[16] Babeshko V. A., Evdokimova O. V., Babeshko O. M., “Fractal properties of block elements and a new universal modeling method”, Doklady Physics, 66:8 (2021), 218–222 | DOI | DOI
[17] Vorovich I. I., Babeshko V. A., Dynamic Mixed Problems of Elasticity Theory for Nonclassical Domains, Nauka, M., 1979, 320 pp. (in Russian)
[18] Babeshko V. A., Evdokimova O. V., Babeshko O. M., Evdokimov V. S., “On the mechanical concept of self-assembly of nanomaterials”, Mechanics of Solids, 58 (2023), 1528–1535 | DOI | DOI