Orthorecursive expansions generated by the Szeg\"o kernel
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 4, pp. 443-455.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article considers systems of subspaces of the Hardy space generated by the Szegö kernel. The main result of the work is to establish the convergence of orthorecursive expansions with respect to the considered systems of subspaces. Note that the conditions for the convergence of orthorecursive expansions prove to be somewhat more restrictive compared to the previously obtained conditions for the convergence of order-preserving weak greedy algorithms and frame expansions.
@article{ISU_2023_23_4_a2,
     author = {P. A. Terekhin},
     title = {Orthorecursive expansions generated by the {Szeg\"o} kernel},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {443--455},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_4_a2/}
}
TY  - JOUR
AU  - P. A. Terekhin
TI  - Orthorecursive expansions generated by the Szeg\"o kernel
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2023
SP  - 443
EP  - 455
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2023_23_4_a2/
LA  - ru
ID  - ISU_2023_23_4_a2
ER  - 
%0 Journal Article
%A P. A. Terekhin
%T Orthorecursive expansions generated by the Szeg\"o kernel
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2023
%P 443-455
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2023_23_4_a2/
%G ru
%F ISU_2023_23_4_a2
P. A. Terekhin. Orthorecursive expansions generated by the Szeg\"o kernel. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 4, pp. 443-455. http://geodesic.mathdoc.fr/item/ISU_2023_23_4_a2/

[1] L. Carleson, “On bounded analytic functions and closure problems”, Arkiv for Matematik, 2:2-3 (1952), 283–291 | DOI | MR | Zbl

[2] K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall Inc, New Jersey, 1962, 242 pp. | MR | Zbl

[3] J. R. Partington, Interpolation, Identification, and Sampling, Clarendon Press, Oxford, 1997, 267 pp. | MR | Zbl

[4] A. W. Marcus, D. A. Spielman, N. Srivastava, “Interlacing families II: Mixed characteristic polynomials and the Kadison Singer problem”, Annals of Mathematics, 182:1 (2015), 327–350 | DOI | MR | Zbl

[5] V. Totik, “Recovery of $H^p$-functions”, Proceedings of the American Mathematical Society, 90:4 (1984), 531–537 | DOI | MR | Zbl

[6] E. Fricain, L. H. Khoi, P. Lefevre, “Representing systems generated by reproducing kernels”, Indagationes Mathematicae, 29:3 (2018), 860–872 | DOI | MR | Zbl

[7] K. S. Speransky, P. A. Terekhin, “A representing system generated by the Szego kernel for the Hardy space”, Indagationes Mathematicae, 29:5 (2018), 1318–1325 | DOI | MR | Zbl

[8] P. A. Terekhin, “Frames in Banach space”, Functional Analysis and Its Applications, 44:3 (2010), 199–208 | DOI | DOI | MR | Zbl

[9] K. S. Speransky, “On the convergence of the order-preserving weak greedy algorithm for subspaces generated by the Szego kernel in the Hardy space”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 21:3 (2021), 336–342 | DOI | MR | Zbl

[10] T. P. Lukashenko, “Properties of orthorecursive expansions in nonorthogonal systems”, Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2001, no. 1, 6–10 (in Russian) | Zbl

[11] T. P. Lukashenko, V. A. Sadovnichii, “Orthorecursive expansions with respect to subspaces”, Doklady Mathematics, 86:1 (2012), 472–475 | DOI | MR | Zbl

[12] V. V. Galatenko, T. P. Lukashenko, V. A. Sadovnichii, “On the properties of orthorecursive expansions with respect to subspaces”, Proceedings of the Steklov Institute of Mathematics, 284 (2014), 129–132 | DOI | DOI | MR | Zbl

[13] A. V. Politov, “Orthorecursive expansions in Hilbert spaces”, Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2010, no. 3, 3–7 (in Russian) | MR | Zbl

[14] A. Yu. Kudryavtsev, “On the convergence of orthorecursive expansions in nonorthogonal wavelets”, Mathematical Notes, 92:5 (2012), 643–656 | DOI | DOI | MR | MR | Zbl