Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2023_23_3_a6, author = {V. N. Hoang and V. V. Provotorov}, title = {Stability of three-layer differential-difference schemes with weights in the space of summable functions with supports in a network-like domain}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {357--369}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a6/} }
TY - JOUR AU - V. N. Hoang AU - V. V. Provotorov TI - Stability of three-layer differential-difference schemes with weights in the space of summable functions with supports in a network-like domain JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2023 SP - 357 EP - 369 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a6/ LA - ru ID - ISU_2023_23_3_a6 ER -
%0 Journal Article %A V. N. Hoang %A V. V. Provotorov %T Stability of three-layer differential-difference schemes with weights in the space of summable functions with supports in a network-like domain %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2023 %P 357-369 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a6/ %G ru %F ISU_2023_23_3_a6
V. N. Hoang; V. V. Provotorov. Stability of three-layer differential-difference schemes with weights in the space of summable functions with supports in a network-like domain. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 3, pp. 357-369. http://geodesic.mathdoc.fr/item/ISU_2023_23_3_a6/
[1] Provotorov V. V., Sergeev S. M., Hoang V. N., “Point control of a differential-difference system with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:3 (2021), 277–286 | DOI | MR
[2] Zhabko A. P., Provotorov V. V., Shindyapin A. I., “Optimal control of a differential-difference parabolic system with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:4 (2021), 433–448 | DOI | MR
[3] Hoang V. N., Provotorov V. V., “Stability of a three-layer symmetric differential-difference scheme in the class of functions summable on a network-like domain”, Russian Universities Reports. Mathematics, 27:137 (2022), 80–94 (in Russian) | DOI
[4] Rothe E., “Über die Wärmeleitungsgleichung mit nichtkonstanten Koeffizienten im räumlichen Falle”, Mathematische Annalen, 104 (1931), 355–362 (in German) | DOI | MR | Zbl
[5] Samarsky A. A., Theory of Difference Schemes, M. Nauka, 1977, 655 pp. (in Russian)
[6] Doubova A., Fernandez-Cara E., Gonzalez-Burgos M., “Controllability results for linear viscoelastic fluids of the Maxwell and Jeffreys kinds”, Comptes Rendus de l'Academie des Sciences – Series I – Mathematics, 331:7 (2000), 537–542 | DOI | MR | Zbl
[7] Boldrini J. L., Doubova A., Fernandez-Cara E., Gonzalez-Burgos M., “Some controllability results for linear viscoelastic fluids”, SIAM Journal on Control and Optimization, 50:2 (2012), 900–924 | DOI | MR | Zbl
[8] Renardy M., “On control of shear flow of an upper convected Maxwell fluid”, Zeitschrift fur Angewandte Mathematik und Mechanik, 87 (2007), 213–218 | DOI | MR | Zbl
[9] Wachsmuth D., Roubicek T., “Optimal control of planar flow of incompressible non-Newtonian fluids”, Zeitschrift fur Analysis und ihre Anwendung, 29 (2010), 351–376 | DOI | MR | Zbl
[10] Debbouche A., Nieto J. J., “Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls”, Applied Mathematics and Computation, 245 (2014), 74–85 | DOI | MR | Zbl
[11] Baranovskii E. S., “Steady flows of an Oldroyd fluid with threshold slip”, Communications on Pure and Applied Analysis, 18:2 (2019), 735–750 | DOI | MR | Zbl
[12] Baranovskii E. S., Artemov M. A., “Solvability of the Boussinesq approximation for water polymer solutions”, Mathematics, 7:7 (2019), 611 | DOI
[13] Artemov M. A., Baranovskii E. S., “Global existence results for Oldroyd fluids with wall slip”, Acta Applicandae Mathematicae, 147:1 (2017), 197–210 | DOI | MR | Zbl