Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2023_23_2_a5, author = {S. V. Lekomtsev and V. P. Matveenko and A. N. Senin}, title = {Passive damping of vibrations of a cylindrical shell interacting with~a~flowing fluid}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {207--226}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a5/} }
TY - JOUR AU - S. V. Lekomtsev AU - V. P. Matveenko AU - A. N. Senin TI - Passive damping of vibrations of a cylindrical shell interacting with~a~flowing fluid JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2023 SP - 207 EP - 226 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a5/ LA - ru ID - ISU_2023_23_2_a5 ER -
%0 Journal Article %A S. V. Lekomtsev %A V. P. Matveenko %A A. N. Senin %T Passive damping of vibrations of a cylindrical shell interacting with~a~flowing fluid %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2023 %P 207-226 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a5/ %G ru %F ISU_2023_23_2_a5
S. V. Lekomtsev; V. P. Matveenko; A. N. Senin. Passive damping of vibrations of a cylindrical shell interacting with~a~flowing fluid. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 2, pp. 207-226. http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a5/
[1] Hagood N. W., von Flotow A. H., “Damping of structural vibrations with piezoelectric materials and passive electrical networks”, Journal of Sound and Vibration, 146:2 (1991), 243–268 | DOI
[2] Park C. H., Inman D. J., “Enhanced piezoelectric shunt design”, Shock and Vibration, 10 (2003), 127–133 | DOI
[3] Fleming A. J., Moheimani S. O. R., “Control orientated synthesis of high-performance piezoelectric shunt impedances for structural vibration control”, IEEE Transactions on Control Systems Technology, 13:1 (2005), 98–112 | DOI
[4] Porfiri M., Maurini C., Pouget J.-P., “Identification of electromechanical modal parameters of linear piezoelectric structures”, Smart Materials and Structures, 16:2 (2007), 323–331 | DOI
[5] Thomas O., Ducarne J., Deü J.-F., “Performance of piezoelectric shunts for vibration reduction”, Smart Materials and Structures, 21:1 (2012), 015008 | DOI | MR
[6] Soltani P., Kerschen G., Tondreau G., Deraemaeker A., “Piezoelectric vibration damping using resonant shunt circuits: An exact solution”, Smart Materials and Structures, 23:12 (2014), 125014 | DOI
[7] Heuss O., Salloum R., Mayer D., Melz T., “Tuning of a vibration absorber with shunted piezoelectric transducers”, Archive of Applied Mechanics, 86 (2016), 1715–1732 | DOI
[8] Toftekær J. F., Benjeddou A., Høgsberg J., “General numerical implementation of a new piezoelectric shunt tuning method based on the effective electromechanical coupling coefficient”, Mechanics of Advanced Materials and Structures, 27:22 (2020), 1908–1922 | DOI
[9] Gripp J. A. B., Rade D. A., “Vibration and noise control using shunted piezoelectric transducers: A review”, Mechanical Systems and Signal Processing, 112 (2018), 359–383 | DOI
[10] Presas A., Luo Y., Wang Z., Valentin D., Egusquiza M., “A review of PZT patches applications in submerged systems”, Sensors, 18:7 (2018), 2251 | DOI
[11] Marakakis K., Tairidis G. K., Koutsianitis P., Stavroulakis G. E., “Shunt piezoelectric systems for noise and vibration control: A review”, Frontiers in Built Environment, 5 (2019), 64 | DOI | MR
[12] Moheimani S. O. R., Fleming A. J., Piezoelectric Transducers for Vibration Control and Damping, 1st ed., Springer, London, 2006, 287 pp. | DOI | Zbl
[13] Zhang J. M., Chang W., Varadan V. K., Varadan V. V., “Passive underwater acoustic damping using shunted piezoelectric coatings”, Smart Materials and Structures, 10:2 (2001), 414–420 | DOI
[14] Larbi W., Deü J.-F., Ohayon R., “Finite element formulation of smart piezoelectric composite plates coupled with acoustic fluid”, Composite Structures, 94:2 (2012), 501–509 | DOI
[15] Sun Y., Li Z., Huang A., Li Q., “Semi-active control of piezoelectric coating's underwater sound absorption by combining design of the shunt impedances”, Journal of Sound and Vibration, 355 (2015), 19–38 | DOI
[16] Larbi W., “Numerical modeling of sound and vibration reduction using viscoelastic materials and shunted piezoelectric patches”, Computers Structures, 232 (2020), 105822 | DOI
[17] Pernod L., Lossouarn B., Astolfi J.-A., Deü J.-F., “Vibration damping of marine lifting surfaces with resonant piezoelectric shunts”, Journal of Sound and Vibration, 496 (2021), 115921 | DOI
[18] Lekomtsev S. V., Oshmarin D. A., Sevodina N. V., “An approach to the analysis of hydroelastic vibrations of electromechanical systems, based on the solution of the non-classical eigenvalue problem”, Mechanics of Advanced Materials and Structures, 28 (2021), 1957–1964 | DOI
[19] Iurlov M. A., Kamenskikh A. O., Lekomtsev S. V., Matveenko V. P., “Passive suppression of resonance vibrations of a plate and parallel plates assembly, interacting with a fluid”, International Journal of Structural Stability and Dynamics, 22:9 (2022), 2250101 | DOI
[20] Matveenko V. P., Iurlova N. A., Oshmarin D. A., Sevodina N. V., Iurlov M. A., “An approach to determination of shunt circuits parameters for damping vibrations”, International Journal of Smart and Nano Materials, 9:2 (2018), 135–149 | DOI
[21] Zienkiewicz O. C., Finite Element Method in Engineering Science, McGraw-Hill, London, 1971, 521 pp. | MR | Zbl
[22] Reddy J. N., Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd ed., CRC Press, Boca Raton, 2004, 858 pp. | DOI
[23] ANSI/IEEE Std176-1987. IEEE Standard on Piezoelectricity, IEEE, New York, 1987, 66 pp. | DOI
[24] Thomas O., Deü J.-F., Ducarne J., “Vibrations of an elastic structure with shunted piezoelectric patches: Efficient finite element formulation and electromechanical coupling coefficients”, International Journal for Numerical Methods in Engineering, 80:2 (2009), 235–268 | DOI | MR | Zbl
[25] Moon S. H., Kim S. J., “Active and passive suppressions of nonlinear panel flutter using finite element method”, American Institute of Aeronautics and Astronautics Journal, 39:11 (2001), 2042–2050 | DOI
[26] Yao G., Li F.-M., “The stability analysis and active control of a composite laminated open cylindrical shell in subsonic airflow”, Journal of Intelligent Material Systems and Structures, 25:3 (2014), 259–270 | DOI | MR
[27] Benjeddou A., Deü J.-F., Letombe S., “Free vibrations of simply-supported piezoelectric adaptive plates: An exact sandwich formulation”, Thin-Walled Structures, 40:7–8 (2002), 573–593 | DOI
[28] Sheng G. G., Wang X., “Thermoelastic vibration and buckling analysis of functionally graded piezoelectric cylindrical shells”, Applied Mathematical Modelling, 34:9 (2010), 2630–2643 | DOI | MR | Zbl
[29] Allik H., Hughes J. R., “Finite element method for piezoelectric vibration”, International Journal for Numerical Methods in Engineering, 2:2 (1970), 151–157 | DOI
[30] Il'gamov M. A., Vibrations of Elastic Shells Containing Liquid and Gas, Nauka, M., 1969, 182 pp. (in Russian)
[31] Païdoussis M. P., Fluid-structure Interactions: Slender Structures and Axial Flow, in 2 vols., v. 2, 2nd ed., Elsevier Academic Press, London, 2016, 944 pp. | DOI
[32] Bochkarev S. A., Lekomtsev S. V., Matveenko V. P., “Hydroelastic stability of a rectangular plate interacting with a layer of ideal flowing fluid”, Fluid Dynamics, 51:6 (2016), 821–833 | DOI | DOI | MR | Zbl
[33] Zienkiewicz O. C., Taylor R. L., The Finite Element Method, in 3 vols., v. 2, Solid Mechanics, 5th ed., Butterworth-Heinemann, Oxford–Boston, 2000, 459 pp. | MR | Zbl
[34] Reddy J. N., An Introduction to Nonlinear Finite Element Analysis: With applications to heat transfer, fluid mechanics, and solid mechanics, 2nd ed., Oxford University Press, 2015, 768 pp. | MR
[35] Bochkarev S. A., Lekomtsev S. V., Matveenko V. P., Senin A. N., “Hydroelastic stability of partially filled coaxial cylindrical shells”, Acta Mechanica, 230:11 (2019), 3845–3860 | DOI | MR
[36] Tisseur F., Meerbergen K., “The quadratic eigenvalue problem”, SIAM Review, 43:2 (1988), 235–286 | DOI | MR
[37] Lehoucq R. B., Sorensen D. C., “Deflation techniques for an implicitly restarted Arnoldi iteration”, SIAM Journal on Matrix Analysis and Applications, 17:4 (1996), 789–821 | DOI | MR | Zbl
[38] Larbi W., Deü J.-F., Ohayon R., “Vibration of axisymmetric composite piezoelectric shells coupled with internal fluid”, International Journal for Numerical Methods in Engineering, 71:12 (2007), 1412–1435 | DOI | Zbl
[39] Lekomtsev S. V., Oshmarin D. A., Sevodina N. V., “An approach to the analysis of hydroelastic vibrations of electromechanical systems, based on the solution of the non-classical eigenvalue problem”, Mechanics of Advanced Materials and Structures, 28:19 (2021), 1957–1964 | DOI
[40] Yurlova N. A., Sevodina N. V., Oshmarin D. A., Iurlov M. A., “Algorithm for solving problems related to the natural vibrations of electro-viscoelastic structures with shunt circuits using ANSYS data”, International Journal of Smart and Nano Materials, 10:2 (2019), 156–176 | DOI