On the approximation of bounded functions by trigonometric polynomials in Hausdorff metric
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 2, pp. 169-182

Voir la notice de l'article provenant de la source Math-Net.Ru

The article discusses a method for constructing a spline function to obtain estimates that are exact in order to approximate bounded functions by trigonometric polynomials in the Hausdorff metric. The introduction provides a brief history of approximation of continuous and bounded functions in the uniform metric and the Hausdorff metric. Section 1 contains the main definitions, necessary facts, and formulates the main result. An estimate for the indicated approximations is obtained from Jackson's inequality for uniform approximations. In section 2 auxiliary statements are proved. So, for an arbitrary $2\pi$-periodic bounded function, a spline function is constructed. Then, estimates are obtained for the best approximation, variation, and modulus of continuity of a given spline function. Section 3 contains evidence of the main results and final comments.
@article{ISU_2023_23_2_a2,
     author = {E. H. Sadekova},
     title = {On the approximation of bounded functions by trigonometric polynomials in {Hausdorff} metric},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {169--182},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a2/}
}
TY  - JOUR
AU  - E. H. Sadekova
TI  - On the approximation of bounded functions by trigonometric polynomials in Hausdorff metric
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2023
SP  - 169
EP  - 182
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a2/
LA  - ru
ID  - ISU_2023_23_2_a2
ER  - 
%0 Journal Article
%A E. H. Sadekova
%T On the approximation of bounded functions by trigonometric polynomials in Hausdorff metric
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2023
%P 169-182
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a2/
%G ru
%F ISU_2023_23_2_a2
E. H. Sadekova. On the approximation of bounded functions by trigonometric polynomials in Hausdorff metric. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 2, pp. 169-182. http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a2/