On the approximation of bounded functions by trigonometric polynomials in Hausdorff metric
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 2, pp. 169-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article discusses a method for constructing a spline function to obtain estimates that are exact in order to approximate bounded functions by trigonometric polynomials in the Hausdorff metric. The introduction provides a brief history of approximation of continuous and bounded functions in the uniform metric and the Hausdorff metric. Section 1 contains the main definitions, necessary facts, and formulates the main result. An estimate for the indicated approximations is obtained from Jackson's inequality for uniform approximations. In section 2 auxiliary statements are proved. So, for an arbitrary $2\pi$-periodic bounded function, a spline function is constructed. Then, estimates are obtained for the best approximation, variation, and modulus of continuity of a given spline function. Section 3 contains evidence of the main results and final comments.
@article{ISU_2023_23_2_a2,
     author = {E. H. Sadekova},
     title = {On the approximation of bounded functions by trigonometric polynomials in {Hausdorff} metric},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {169--182},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a2/}
}
TY  - JOUR
AU  - E. H. Sadekova
TI  - On the approximation of bounded functions by trigonometric polynomials in Hausdorff metric
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2023
SP  - 169
EP  - 182
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a2/
LA  - ru
ID  - ISU_2023_23_2_a2
ER  - 
%0 Journal Article
%A E. H. Sadekova
%T On the approximation of bounded functions by trigonometric polynomials in Hausdorff metric
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2023
%P 169-182
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a2/
%G ru
%F ISU_2023_23_2_a2
E. H. Sadekova. On the approximation of bounded functions by trigonometric polynomials in Hausdorff metric. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 2, pp. 169-182. http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a2/

[1] Jackson D., Üeber die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung, Inaugural-Dissertation, Gottingen, 1911, 99 pp. (in German)

[2] Daugavet I. K., Introduction to the Theory of Approximation of Functions, Leningrad State University Publ, L., 1977, 184 pp. (in Russian)

[3] Sendov B., “Approximation of functions with algebraic completeness with respect to a Hausdorff type metric”, Annuaire de l'Université de Sofia. Faculté des sciences physiques et mathématiques, 55, Nauka i izkustvo, Sofia, 1962, 1–39 (in Bulgarian)

[4] Dolzhenko E. P., Sevast'yanov E. A., “Approximations of functions in the Hausdorff metric by piecewise monotonic (in particular, rational) functions”, Mathematics of the USSR-Sbornik, 30:4 (1976), 449–477 | DOI | MR | Zbl

[5] Veselinov V. M., “Approximation of functions by means of trigonometric polynomials with respect to a metric of Hausdorff type”, Mathematica (Cluj), 9:1 (1967), 185–199 (in Russian) | MR | Zbl

[6] Dolzhenko E. P., Sevast'yanov E. A., “On the dependence of properties of functions on their degree of approximation by polynomials”, Mathematics of the USSR-Izvestiya, 12:2 (1978), 255–288 | DOI | MR | MR | Zbl | Zbl

[7] Sendov B. Kh., Popov V. A., “The exact asymptotic behavior of the best approximation by algebraic and trigonometric polynomials in the Hausdorff metric”, Mathematics of the USSR-Sbornik, 18:1 (1972), 139–149 | DOI | MR | Zbl

[8] Sendov B. Kh., Popov V. A., “On a generalization of Jackson's theorem for best approximation”, Journal of Approximation Theory, 9:2 (1973), 102–111 | DOI | MR | Zbl

[9] Boyanov T. P., “The exact asymptotics of the best Hausdorff approximation of classes of functions with a given modulus of continuity”, Serdika Bulgarian Mathematical Journal, 6 (1980), 84–97 (in Russian) | MR | Zbl