Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2023_23_2_a1, author = {M. A. Komarov}, title = {Rate of interpolation of analytic functions with regularly decreasing coefficients by simple partial fractions}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {157--168}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a1/} }
TY - JOUR AU - M. A. Komarov TI - Rate of interpolation of analytic functions with regularly decreasing coefficients by simple partial fractions JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2023 SP - 157 EP - 168 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a1/ LA - ru ID - ISU_2023_23_2_a1 ER -
%0 Journal Article %A M. A. Komarov %T Rate of interpolation of analytic functions with regularly decreasing coefficients by simple partial fractions %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2023 %P 157-168 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a1/ %G ru %F ISU_2023_23_2_a1
M. A. Komarov. Rate of interpolation of analytic functions with regularly decreasing coefficients by simple partial fractions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 2, pp. 157-168. http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a1/
[1] Danchenko V. I., Danchenko D. Ya., “Approximation by simplest fractions”, Mathematical Notes, 70:4 (2001), 502–507 | DOI | DOI | MR | Zbl
[2] Danchenko V. I., Komarov M. A., Chunaev P. V., “Extremal and approximative properties of simple partial fractions”, Russian Mathematics, 62:12 (2018), 6–41 | DOI | MR | Zbl
[3] Kosukhin O. N., On some non-traditional methods of approximation, related to complex polynomials, Diss. Cand. Sci. (Phiz. and Math.), M., 2005, 80 pp. (in Russian)
[4] Kondakova E. N., “Interpolation by simple partial fractions”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 9:2 (2009), 30–37 (in Russian) | DOI | MR
[5] Komarov M. A., “A criterion for the best uniform approximation by simple partial fractions in terms of alternance”, Izvestiya: Mathematics, 79:3 (2015), 431–448 | DOI | DOI | MR | Zbl
[6] Danchenko V. I., Chunaev P. V., “Approximation by simple partial fractions and their generalizations”, Journal of Mathematical Sciences, 176:6 (2011), 844–859 | DOI | MR | Zbl
[7] Chunaev P. V. On a nontraditional method of approximation, Proceedings of the Steklov Institute of Mathematics, 270:1 (2010), 278–284 | DOI | MR | Zbl
[8] Chunaev P. V., “Interpolation by generalized exponential sums with equal weights”, Journal of Approximation Theory, 254 (2020), 105397 | DOI | MR | Zbl
[9] Borodin P. A., “Approximation by simple partial fractions with constraints on the poles. II”, Sbornik: Mathematics, 207:3 (2016), 331–341 | DOI | DOI | MR | Zbl
[10] Komarov M. A., “On the rate of approximation in the unit disc of $H^1$-functions by logarithmic derivatives of polynomials with zeros on the boundary”, Izvestiya: Mathematics, 84:3 (2020), 437–448 | DOI | DOI | MR | MR | Zbl
[11] Duren P. L., Theory of $H^p$ spaces, Academic Press, New York–London, 1970, 258 pp. | MR
[12] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, v. 1, Elementary Functions, Nauka, M., 1981, 800 pp. (in Russian) | MR
[13] Bateman H., Erdélyi A., Higher Transcendental Functions, v. 3, Elliptic and Automorphic Functions, Lamé and Mathieu functions, Nauka, M., 1967, 300 pp. (in Russian) | MR