On estimates of the order of the best $M$-term approximations of~functions of several variables in the anisotropic Lorentz -- Zygmund space
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 2, pp. 142-156

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the anisotropic Lorentz – Karamata space of periodic functions of several variables and the Nikol'skii – Besov class in this space. The order-sharp estimates are established for the best $M$-term trigonometric approximations of functions from the Nikol'skii-Besov class in the norm of another Lorentz – Zygmund space.
@article{ISU_2023_23_2_a0,
     author = {G. Akishev},
     title = {On estimates of the order of the best $M$-term approximations of~functions of several variables in the anisotropic {Lorentz} -- {Zygmund} space},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {142--156},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a0/}
}
TY  - JOUR
AU  - G. Akishev
TI  - On estimates of the order of the best $M$-term approximations of~functions of several variables in the anisotropic Lorentz -- Zygmund space
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2023
SP  - 142
EP  - 156
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a0/
LA  - ru
ID  - ISU_2023_23_2_a0
ER  - 
%0 Journal Article
%A G. Akishev
%T On estimates of the order of the best $M$-term approximations of~functions of several variables in the anisotropic Lorentz -- Zygmund space
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2023
%P 142-156
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a0/
%G ru
%F ISU_2023_23_2_a0
G. Akishev. On estimates of the order of the best $M$-term approximations of~functions of several variables in the anisotropic Lorentz -- Zygmund space. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 2, pp. 142-156. http://geodesic.mathdoc.fr/item/ISU_2023_23_2_a0/