@article{ISU_2023_23_1_a9,
author = {A. D. Obukhov},
title = {Method of automatic search for the structure and parameters of~neural networks for solving information processing problems},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {113--125},
year = {2023},
volume = {23},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a9/}
}
TY - JOUR AU - A. D. Obukhov TI - Method of automatic search for the structure and parameters of neural networks for solving information processing problems JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2023 SP - 113 EP - 125 VL - 23 IS - 1 UR - http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a9/ LA - ru ID - ISU_2023_23_1_a9 ER -
%0 Journal Article %A A. D. Obukhov %T Method of automatic search for the structure and parameters of neural networks for solving information processing problems %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2023 %P 113-125 %V 23 %N 1 %U http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a9/ %G ru %F ISU_2023_23_1_a9
A. D. Obukhov. Method of automatic search for the structure and parameters of neural networks for solving information processing problems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 1, pp. 113-125. http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a9/
[1] Beskrovny A. S., Bessonov L. V., Ivanov D. V., Kirillova I. V., Kossovich L. Yu., “Using the mask-RCNN convolutional neural network to automate the construction of two-dimensional solid vertebral models”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 20:4 (2020), 502–516 (in Russian) | DOI | MR
[2] Li H., Yuan D., Ma X., Cui D., Cao L., “Genetic algorithm for the optimization of features and neural networks in ECG signals classification”, Scientific Reports, 7:1 (2017), 1–12 | DOI
[3] He X., Zhao K., Chu X., “AutoML: A Survey of the State-of-the-Art”, Knowledge-Based Systems, 212 (2021), 106622 | DOI
[4] Jin H., Song Q., Hu X., “Auto-keras: An efficient neural architecture search system”, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019, 1946–1956 | DOI
[5] Real E., Aggarwal A., Huang Y., Le Q. V., “Regularized evolution for image classifier architecture search”, Proceedings of the AAAI Conference on Artificial Intelligence, 33 (2019), 4780–4789 | DOI
[6] Budjac R., Nikmon M., Schreiber P., Zahradnikova B., Janacova D., “Automated machine learning overview”, Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 27:45 (2019), 107–112 | DOI
[7] Feurer M., Klein A., Eggensperger K., Springenberg J., Blum M., Hutter F., “Efficient and robust automated machine learning”, Automated Machine Learning, 2019, 113–134 | DOI | MR
[8] Le Q., Zoph B., Using machine learning to explore neural network architecture, Google Research Blog, , 2017 (accessed 5 April 2022) https://research.googleblog.com/2017/05/using-machine-learning-to-explore.html
[9] Gong X., Chang S., Jiang Y., Wang Z., “Autogan: Neural architecture search for generative adversarial networks”, Proceedings of the IEEE International Conference on Computer Vision, 2019, 3224–3234 | DOI
[10] Liu C., Zoph B., Neumann M., Shlens J., Hua W., Li L. J., Murphy K., “Progressive Neural Architecture Search”, Computer Vision - ECCV 2018, ECCV 2018, Lecture Notes in Computer Science, 11205, eds. V. Ferrari, M. Hebert, C. Sminchisescu, Y. Weiss, Springer, Cham, 2018, 19–34 | DOI
[11] Cai H., Gan C., Han S., Once for all: Train one network and specialize it for efficient deployment, arXiv: 1908.09791
[12] Truong A., Walters A., Goodsitt J., Hines K., Bruss C. B., Farivar R., “Towards automated machine learning: Evaluation and comparison of AutoML approaches and tools”, 2019 IEEE 31st International Conference on Tools with Artificial Intelligence, 2019, 1471–1479 | DOI
[13] Moen E., Bannon D., Kudo T., Graf W., Covert M., Van Valen D., “Deep learning for cellular image analysis”, Nature Methods, 16:12 (2019), 1233–1246 | DOI
[14] Obukhov A., Krasnyanskiy M., “Quality assessment method for GAN based on modified metrics inception score and Frechet inception distance”, Proceedings of the Computational Methods in Systems and Software, 2020, 102–114 | DOI
[15] Yann LeCun, Corinna Cortes, Chris Burges, MNIST handwritten digit database, (accessed 5 April 2022) http://yann.lecun.com/exdb/mnist/
[16] UCI Machine Learning Repository, (accessed 5 April 2022) https://archive.ics.uci.edu/ml/datasets.php
[17] Obukhov A., Siukhin A., Dedov D., “The model of the automatic control system for a treadmill based on neural networks”, 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), 2020, 1–5 | DOI
[18] Obukhov A., Krasnyanskiy M., “Neural network method of data processing and transmission in adaptive information systems”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 31:1 (2021), 149–164 (in Russian) | DOI | MR