Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2023_23_1_a9, author = {A. D. Obukhov}, title = {Method of automatic search for the structure and parameters of~neural networks for solving information processing problems}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {113--125}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a9/} }
TY - JOUR AU - A. D. Obukhov TI - Method of automatic search for the structure and parameters of~neural networks for solving information processing problems JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2023 SP - 113 EP - 125 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a9/ LA - ru ID - ISU_2023_23_1_a9 ER -
%0 Journal Article %A A. D. Obukhov %T Method of automatic search for the structure and parameters of~neural networks for solving information processing problems %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2023 %P 113-125 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a9/ %G ru %F ISU_2023_23_1_a9
A. D. Obukhov. Method of automatic search for the structure and parameters of~neural networks for solving information processing problems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 1, pp. 113-125. http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a9/
[1] Beskrovny A. S., Bessonov L. V., Ivanov D. V., Kirillova I. V., Kossovich L. Yu., “Using the mask-RCNN convolutional neural network to automate the construction of two-dimensional solid vertebral models”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 20:4 (2020), 502–516 (in Russian) | DOI | MR
[2] Li H., Yuan D., Ma X., Cui D., Cao L., “Genetic algorithm for the optimization of features and neural networks in ECG signals classification”, Scientific Reports, 7:1 (2017), 1–12 | DOI
[3] He X., Zhao K., Chu X., “AutoML: A Survey of the State-of-the-Art”, Knowledge-Based Systems, 212 (2021), 106622 | DOI
[4] Jin H., Song Q., Hu X., “Auto-keras: An efficient neural architecture search system”, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019, 1946–1956 | DOI
[5] Real E., Aggarwal A., Huang Y., Le Q. V., “Regularized evolution for image classifier architecture search”, Proceedings of the AAAI Conference on Artificial Intelligence, 33 (2019), 4780–4789 | DOI
[6] Budjac R., Nikmon M., Schreiber P., Zahradnikova B., Janacova D., “Automated machine learning overview”, Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 27:45 (2019), 107–112 | DOI
[7] Feurer M., Klein A., Eggensperger K., Springenberg J., Blum M., Hutter F., “Efficient and robust automated machine learning”, Automated Machine Learning, 2019, 113–134 | DOI | MR
[8] Le Q., Zoph B., Using machine learning to explore neural network architecture, Google Research Blog, , 2017 (accessed 5 April 2022) https://research.googleblog.com/2017/05/using-machine-learning-to-explore.html
[9] Gong X., Chang S., Jiang Y., Wang Z., “Autogan: Neural architecture search for generative adversarial networks”, Proceedings of the IEEE International Conference on Computer Vision, 2019, 3224–3234 | DOI
[10] Liu C., Zoph B., Neumann M., Shlens J., Hua W., Li L. J., Murphy K., “Progressive Neural Architecture Search”, Computer Vision - ECCV 2018, ECCV 2018, Lecture Notes in Computer Science, 11205, eds. V. Ferrari, M. Hebert, C. Sminchisescu, Y. Weiss, Springer, Cham, 2018, 19–34 | DOI
[11] Cai H., Gan C., Han S., Once for all: Train one network and specialize it for efficient deployment, arXiv: 1908.09791
[12] Truong A., Walters A., Goodsitt J., Hines K., Bruss C. B., Farivar R., “Towards automated machine learning: Evaluation and comparison of AutoML approaches and tools”, 2019 IEEE 31st International Conference on Tools with Artificial Intelligence, 2019, 1471–1479 | DOI
[13] Moen E., Bannon D., Kudo T., Graf W., Covert M., Van Valen D., “Deep learning for cellular image analysis”, Nature Methods, 16:12 (2019), 1233–1246 | DOI
[14] Obukhov A., Krasnyanskiy M., “Quality assessment method for GAN based on modified metrics inception score and Frechet inception distance”, Proceedings of the Computational Methods in Systems and Software, 2020, 102–114 | DOI
[15] Yann LeCun, Corinna Cortes, Chris Burges, MNIST handwritten digit database, (accessed 5 April 2022) http://yann.lecun.com/exdb/mnist/
[16] UCI Machine Learning Repository, (accessed 5 April 2022) https://archive.ics.uci.edu/ml/datasets.php
[17] Obukhov A., Siukhin A., Dedov D., “The model of the automatic control system for a treadmill based on neural networks”, 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), 2020, 1–5 | DOI
[18] Obukhov A., Krasnyanskiy M., “Neural network method of data processing and transmission in adaptive information systems”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 31:1 (2021), 149–164 (in Russian) | DOI | MR