Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2023_23_1_a3, author = {L. A. Sevastianov and K. P. Lovetskiy and D. S. Kulyabov}, title = {A new approach to the formation of systems of linear algebraic equations for solving ordinary differential equations by the collocation method}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {36--47}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a3/} }
TY - JOUR AU - L. A. Sevastianov AU - K. P. Lovetskiy AU - D. S. Kulyabov TI - A new approach to the formation of systems of linear algebraic equations for solving ordinary differential equations by the collocation method JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2023 SP - 36 EP - 47 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a3/ LA - ru ID - ISU_2023_23_1_a3 ER -
%0 Journal Article %A L. A. Sevastianov %A K. P. Lovetskiy %A D. S. Kulyabov %T A new approach to the formation of systems of linear algebraic equations for solving ordinary differential equations by the collocation method %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2023 %P 36-47 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a3/ %G ru %F ISU_2023_23_1_a3
L. A. Sevastianov; K. P. Lovetskiy; D. S. Kulyabov. A new approach to the formation of systems of linear algebraic equations for solving ordinary differential equations by the collocation method. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 23 (2023) no. 1, pp. 36-47. http://geodesic.mathdoc.fr/item/ISU_2023_23_1_a3/
[1] Boyd J. P., Chebyshev and Fourier Spectral Methods, Dover Books on Mathematics, Second Revised Edition, 2013, 668 pp. | MR
[2] Mason J. C., Handscomb D. C., Chebyshev Polynomials, Chapman and Hall/CRC Press, 2002, 360 pp. | DOI | MR
[3] Fornberg B., A Practical Guide to Pseudospectral Methods, Cambridge University Press, New York, 1996, 231 pp. | DOI | MR
[4] Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge University Press, New York, 2007, 1235 pp. | MR
[5] Shen J., Tang T., Wang L.-L., Spectral Methods: Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, 41, Springer, Berlin–Heidelberg, 2011, 472 pp. | DOI | MR
[6] Olver S., Townsend A., “A Fast and Well-Conditioned Spectral Method”, SIAM Review, 55:3 (2013), 462–489 | DOI | MR
[7] Chandrasekaran S., Gu M., “Fast and Stable Algorithms for Banded Plus Semiseparable Systems of Linear Equations”, SIAM Journal on Matrix Analysis and Applications, 25:2 (2003), 373–384 | DOI | MR
[8] Amiraslani A., Corless R. M., Gunasingam M., “Differentiation matrices for univariate polynomials”, Numerical Algorithms, 83:1 (2020), 1–31 | DOI | MR
[9] Zhang X., Boyd J. P., “Asymptotic coefficients and errors for Chebyshev polynomial approximations with weak endpoint singularities: Effects of different bases”, Science China Mathematics, 66:1 (2023), 191–220 | DOI | MR
[10] Boyd J. P., Gally D. H., “Numerical experiments on the accuracy of the Chebyshev – Frobenius companion matrix method for finding the zeros of a truncated series of Chebyshev polynomials”, Journal of Computational and Applied Mathematics, 205:1 (2007), 281–295 | DOI | MR
[11] Dutykh D., A Brief Introduction to Pseudo-spectral Methods: Application to Diffusion Problems, 2019, 55 pp., arXiv: (accessed 30 May 2022) 1606.05432 | MR
[12] Dawkins P., Differential Equations, 2018, 524 pp. (accessed 30 May 2022) https://tutorial.math.lamar.edu/Classes/DE/DE.aspx