Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2022_22_4_a9, author = {A. A. Lobov and M. B. Abrosimov}, title = {Vertex extensions of $4$-layer graphs and hypercubes}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {536--548}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a9/} }
TY - JOUR AU - A. A. Lobov AU - M. B. Abrosimov TI - Vertex extensions of $4$-layer graphs and hypercubes JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 536 EP - 548 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a9/ LA - ru ID - ISU_2022_22_4_a9 ER -
%0 Journal Article %A A. A. Lobov %A M. B. Abrosimov %T Vertex extensions of $4$-layer graphs and hypercubes %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2022 %P 536-548 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a9/ %G ru %F ISU_2022_22_4_a9
A. A. Lobov; M. B. Abrosimov. Vertex extensions of $4$-layer graphs and hypercubes. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 4, pp. 536-548. http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a9/
[1] Bogomolov A. M., Salii V. N., Algebraic Foundations of the Theory of Discrete Systems, Fizmatlit, M., 1997, 368 pp. (in Russian) | MR
[2] Abrosimov M. B., Graph Models of Fault Tolerance, Saratov University Publ, Saratov, 2012, 192 pp.
[3] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Transactions on Computers, C-25:9 (1976), 875–884 | DOI | MR
[4] Harary F., Hayes J. P., “Edge fault tolerance in graphs”, Networks, 23:2 (1993), 135–142 | DOI | MR
[5] Harary F., Hayes J. P., “Node fault tolerance in graphs”, Networks, 27:1 (1996), 19–23 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[6] Abrosimov M. B., “On the complexity of some problems related to graph extensions”, Mathematical Notes, 88:5–6 (2010), 619–625 | DOI | DOI | MR
[7] Abrosimov M. B., Kamil I. A. K., Lobov A. A., “Construction of all nonisomorphic minimal vertex extensions of the graph by the method of canonical representatives”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 19:4 (2019), 479–486 (in Russian) | DOI | MR
[8] Abrosimov M. B., Sudani H. H. K., Lobov A. A., “Construction of all minimal edge extensions of the graph with isomorphism rejection”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 20:1 (2020), 105–115 (in Russian) | DOI | MR
[9] Harary F., Hayes J. P., Wu H.-J., “A survey of the theory of hypercube graphs”, Computers Mathematics with Applications, 15:4 (1988), 277–289 | DOI | MR
[10] Biggs N. L., “Distance-transitive graphs”, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1974, 155–163 | DOI | MR