Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2022_22_4_a5, author = {A. O. Vatulyan and D. K. Plotnikov}, title = {Contact problem for functionally graded orthotropic strip}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {479--493}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a5/} }
TY - JOUR AU - A. O. Vatulyan AU - D. K. Plotnikov TI - Contact problem for functionally graded orthotropic strip JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 479 EP - 493 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a5/ LA - ru ID - ISU_2022_22_4_a5 ER -
%0 Journal Article %A A. O. Vatulyan %A D. K. Plotnikov %T Contact problem for functionally graded orthotropic strip %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2022 %P 479-493 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a5/ %G ru %F ISU_2022_22_4_a5
A. O. Vatulyan; D. K. Plotnikov. Contact problem for functionally graded orthotropic strip. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 4, pp. 479-493. http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a5/
[1] Golovin Yu. I., “Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: a review”, Physics of the Solid State, 50:12 (2008), 2205–2236 | DOI
[2] Epshtein S. A., Borodich F. M., Bull S. J., “Evaluation of elastic modulus and hardness of highly inhomogeneous materials by nanoindentation”, Applied Physics A, 119:1 (2015), 325–335 | DOI
[3] Vorovich I. I., Ustinov Iu. A., “Pressure of a die on an elastic layer of finite thickness”, Journal of Applied Mathematics and Mechanics, 23:3 (1959), 637–650 | DOI | MR
[4] Vorovich I. I., Alexandrov V. M., Babeshko V. A., Non-classical Mixed Problems in Elasticity Theory, Nauka, M., 1974, 456 pp. (in Russian)
[5] Babeshko V. A., “Asymptotic properties of the solutions of a class of integral equations occurring in elasticity theory and mathematical physics”, Soviet Physics. Doklady, 14 (1969), 529–531 | MR
[6] Alexandrov V. M., Babeshko V. A., “Contact problems for an elastic strip of small thickness”, Izv. USSR Academy of Sciences. Mechanics, 1965, no. 2, 95–107 (in Russian)
[7] Aizikovich S. M., Aleksandrov V. M., Belokon A. V., Krenev L. I., Trubchik I. S., Contact Problems of Theory of Elasticity for Inhomogeneous Media, Fizmatlit, M., 2006, 240 pp. (in Russian)
[8] Alexandrov V. M., Mhitaryan S. M., Contact Problems for Bodies with Thin Coatings and Layers, Nauka, M., 1983, 488 pp. (in Russian)
[9] Argatov I. I., Asymptotic Models of Elastic Contact, Nauka, St. Petersburg, 2005, 447 pp. (in Russian)
[10] Vatulyan A. O., Plotnikov D. K., “A model of indentation for a functionally graded strip”, Doklady Physics, 64:4 (2019), 173–175 | DOI | DOI
[11] Vatulyan A. O., Plotnikov D. K., Poddubny A. A., “On some models of indentation for functionally-graded coatings”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 18:4 (2018), 421–432 (in Russian) | DOI | MR
[12] Conway H. D., Vogel S. M., Farnham K. A., So S., “Normal and shearing contact stresses in indented strip and slabs”, International Journal of Engineering Science, 4:4 (1966), 343–359 | DOI
[13] Volkov S. S., Vasilev A. S, Aizikovich S. M., Seleznev N. M., Leonteva A. V., “Stress-strain state of an elastic soft functionally-graded coating subjected to indentation by a spherical punch”, PNRPU Mechanics Bulletin, 2016, no. 4, 20–34 (in Russian) | DOI
[14] Vasiliev A. S., Volkov S. S., Aizikovich S. M., “Approximated analytical solution of contact problem on indentation of elastic half-space with coating reinforced with inhomogeneous interlayer”, Materials Physics and Mechanics, 35:1 (2018), 175–180 | DOI
[15] Vatulyan A. O., Plotnikov D. K., “On a study of the contact problem for an inhomogeneous elastic strip”, Mechanics Solids, 56:7 (2021), 1379–1387 | DOI | DOI
[16] Vatulyan A. O., “On the action of a rigid stamp on an anisotropic half-space”, Static and Dynamic Mixed Problems of Elasticity Theory, ed. I. I.Vorovich, Rostov University Publ., Rostov-on-Don, 1983, 112–115 (in Russian)
[17] Pozharskii D. A., “Contact problem for an orthotropic half-space”, Mechanics of Solids, 52 (2017), 315–322 | DOI | MR
[18] Batra R. C., Jiang W., “Analytical solution of the contact problem of a rigid indenter and an anisotropic linear elastic layer”, International Journal of Solids and Structures, 45:22–23 (2008), 5814–5830 | DOI
[19] Erbaş B., Yusufoǧlu E., Kaplunov J., “A plane contact problem for an elastic orthotropic strip”, Journal of Engineering Mathematics, 70 (2011), 399–409 | DOI | MR
[20] Greenwood J. A., Barber J. R., “Indentation of an elastic layer by a rigid cylinder”, International Journal of Solids and Structures, 49:21 (2012), 2962–2977 | DOI | MR
[21] Argatov I. I., Mishuris G. S., Paukshto M. V., “Cylindrical lateral depth-sensing indentation testing of thin anisotropic elastic films”, European Journal of Mechanics — A/Solids, 49 (2015), 299–307 | DOI | MR
[22] Mozharovsky V. V., Kuzmenkov D. S., “The technique for determining the parameters of a contact for indenter with the orthotropic coating on the elastic isotropic substrate”, Problems of Physics, Mathematics and Technics, 2016, no. 4(29), 74–82 (in Russian)
[23] Mozharovsky V. V., Maryina N. A., Kuzmenkov D. S., “Realization of solution of the contact problem on indentation of rigid cylindrical indenter in isotropic viscoelastic strip on the orthotropic basis”, Problems of Physics, Mathematics and Technics, 2018, no. 2(35), 51–56 (in Russian) | MR
[24] Comez I., Yilmaz K. B., Guler M. A., Yildirim B., “On the plane frictional contact problem of a homogeneous orthotropic layer loaded by a rigid cylindrical stamp”, Archive of Applied Mechanics, 89 (2019), 1403–1419 | DOI
[25] Yilmaz K. B., Comez I., Guler M. A., Yildirim B., “The effect of orthotropic material gradation on the plane sliding frictional contact mechanics problem”, The Journal of Strain Analysis for Engineering Design, 54:4 (2019), 254–275 | DOI
[26] Babeshko V. A., Glushkov E. V., Zinchenko Zh. F., Dynamics of Inhomogeneous Linearly Elastic Media, Nauka, M., 1989, 344 pp. (in Russian)
[27] Bakhvalov N. S., Numerical Methods (Analysis, Algebra, Ordinary Differential Equations), Nauka, M., 1975, 632 pp. (in Russian)
[28] Vishik M. I., Ljusternik L. A., “Regular degeneracy and boundary layer for linear differential equations with a small parameter”, Uspekhi Matematicheskikh Nauk, 12:5(77) (1957), 3–122 (in Russian)
[29] Benerdzhi P., Batterfild R., Boundary Element Methods in Applied Sciences, Mir, M., 1984, 244 pp. (in Russian) | MR