Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2022_22_4_a2, author = {B. V. Simonov and I. E. Simonova and V. A. Ivanyuk}, title = {Kolyada inequality for partial moduli of smoothness of functions with lacunary {Fourier} coefficients}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {447--457}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a2/} }
TY - JOUR AU - B. V. Simonov AU - I. E. Simonova AU - V. A. Ivanyuk TI - Kolyada inequality for partial moduli of smoothness of functions with lacunary Fourier coefficients JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 447 EP - 457 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a2/ LA - ru ID - ISU_2022_22_4_a2 ER -
%0 Journal Article %A B. V. Simonov %A I. E. Simonova %A V. A. Ivanyuk %T Kolyada inequality for partial moduli of smoothness of functions with lacunary Fourier coefficients %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2022 %P 447-457 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a2/ %G ru %F ISU_2022_22_4_a2
B. V. Simonov; I. E. Simonova; V. A. Ivanyuk. Kolyada inequality for partial moduli of smoothness of functions with lacunary Fourier coefficients. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 4, pp. 447-457. http://geodesic.mathdoc.fr/item/ISU_2022_22_4_a2/
[1] Ul'janov P. L., “The imbedding of certain classes $H_p^\omega$”, Izvestiya: Mathematics, 2:3 (1968), 601–637 | DOI
[2] Ul'yanov P. L., “Imbedding theorems and relations between best approximations (moduli of continuity) in different metrics”, Mathematics of the USSR-Sbornik, 10:1 (1970), 103–126 | DOI | MR | MR
[3] Kolyada V. I., “On relations between the moduli of continuity in various metrics”, Proceedings of the Steklov Institute of Mathematics, 181 (1989), 127–148 | MR
[4] Netrusov Yu. V., “Imbedding theorems for the spaces $H_p^{\omega, k}$ and $ H_p^{s,\omega, k}$”, Zapiski Nauchnykh Seminarov LOMI, 159, 1987, 83–102 (in Russian)
[5] Gol'dman M. L., “A criterion of imbedding for different metrics for isotropic Besov spaces with general moduli of continuity”, Proceedings of the Steklov Institute of Mathematics, 201:2 (1994), 155–181
[6] Trebels W., “Inequalities for moduli of smoothness versus embeddings of function spaces”, Archiv der Mathematik, 94 (2010), 155–164 | DOI | MR
[7] Potapov M. K., Simonov B. V., Tikhonov S. Yu., Fractional Moduli of Smoothness, MAKS-Press, M., 2016, 337 pp. (in Russian)
[8] Besov O. V., Ilin V. P., Nikol'skii S. M., Integral Representations of Functions and Imbedding Theorems, Halsted Press, New York–Toronto–London, 1978, 345 pp. | MR | MR
[9] Hardy G. H., Littlewood J. E., Pólya G., Inequalities, Cambridge University Press, London, 1934, 336 pp. | MR
[10] Potapov M. K., Simonov B. V., “Properties of mixed moduli of smoothness of functions with lacunary Fourier coefficients”, Moscow University Mathematics Bulletin, 69 (2014), 5–15 | DOI | MR