Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2022_22_3_a6, author = {D. I. Mayskov and A. A. Sagaidachnyi and M. D. Matasov and A. V. Fomin and A. V. Skripal}, title = {Influence of the modulation of the blood flow velocity in peripheral vessels on the temperature of the outer wall of the vessel: {Finite} element modeling of the adjoint problem}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {332--344}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a6/} }
TY - JOUR AU - D. I. Mayskov AU - A. A. Sagaidachnyi AU - M. D. Matasov AU - A. V. Fomin AU - A. V. Skripal TI - Influence of the modulation of the blood flow velocity in peripheral vessels on the temperature of the outer wall of the vessel: Finite element modeling of the adjoint problem JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 332 EP - 344 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a6/ LA - ru ID - ISU_2022_22_3_a6 ER -
%0 Journal Article %A D. I. Mayskov %A A. A. Sagaidachnyi %A M. D. Matasov %A A. V. Fomin %A A. V. Skripal %T Influence of the modulation of the blood flow velocity in peripheral vessels on the temperature of the outer wall of the vessel: Finite element modeling of the adjoint problem %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2022 %P 332-344 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a6/ %G ru %F ISU_2022_22_3_a6
D. I. Mayskov; A. A. Sagaidachnyi; M. D. Matasov; A. V. Fomin; A. V. Skripal. Influence of the modulation of the blood flow velocity in peripheral vessels on the temperature of the outer wall of the vessel: Finite element modeling of the adjoint problem. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 3, pp. 332-344. http://geodesic.mathdoc.fr/item/ISU_2022_22_3_a6/
[1] Stefanovska A., “Physics of the human cardiovascular system”, Contemporary Physics, 40:1 (1999), 31–55 | DOI
[2] Sagaidachnyi A. A., Volkov I. Yu., Fomin A. V., Skripal A. V., “Investigation of thermal wave propagation within the model of biological tissue and the possibility of thermal imaging of vasomotor activity of peripheral vessels”, Russian Journal of Biomechanics, 23:2 (2019), 209–217 | DOI | DOI
[3] Liu J., Xu L. X., “Estimation of blood perfusion using phase shift in temperature response to sinusoidal heating at the skin surface”, IEEE Transactions on Biomedical Engineering, 46:9 (1999), 1037–1043 | DOI
[4] Zhang X., Zheng L., Liu L., Zhang X., “Modeling and simulation on heat transfer in blood vessels subject to a transient laser irradiation”, Journal of Heat Transfer, 142:3 (2020), 031201 | DOI | MR
[5] Deng Z. S., Liu J., “Blood perfusion-based model for characterizing the temperature fluctuation in living tissues”, Physica A: Statistical Mechanics and its Applications, 300:3–4 (2001), 521–530 | DOI | Zbl
[6] Tang Y., Mizeva I., He Y., “A modeling study on the influence of blood flow regulation on skin temperature pulsations”, Saratov Fall Meeting 2016: Laser Physics and Photonics XVII; and Computational Biophysics and Analysis of Biomedical Data III (Saratov, 2017), 2016, 1033716 | DOI
[7] Luchakov Y. I., Nozdrachev A. D., “Mechanism of heat transfer in different regions of human body”, Biology Bulletin, 36:1 (2009), 53–57 | DOI
[8] Ivanov D., Dol A., Polienko A., “Patient-specific hemodynamics and stress-strain state of cerebral aneurysms”, Acta of Bioengineering and Biomechanics, 18:2 (2016), 9–17 | DOI
[9] Ivanov D. V., Dol A. V., Kuzyk Yu. I., “Biomechanical bases of forecasting occurrence of carotid atherosclerosis”, Russian Journal of Biomechanics, 21:1 (2017), 29–40 (in Russian) | DOI
[10] Hristov J., “Bio-heat models revisited: Concepts, derivations, nondimensalization and fractionalization approaches”, Frontiers in Physics, 9 (2019), 189 | DOI
[11] Porret C. A., Stergiopulos N., Hayoz D., Brunner H. R., Meister J. J., “Simultaneous ipsilateral and contralateral measurements of vasomotion in conduit arteries of human upper limbs”, American Journal of Physiology-Heart and Circulatory Physiology, 269:6 (1995), H1852–H1858 | DOI
[12] Sagaidachnyi A. A, Fomin A. V., Volkov I. Yu., “Limit capabilities of modern thermal imaging cameras as a tool for investigation of peripheral blood flow oscillations within different frequency ranges”, Medical Physics, 2016, no. 4 (72), 84–93 (in Russian)