What scientific folklore knows about the distances between the most popular distributions
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 2, pp. 233-240
Cet article a éte moissonné depuis la source Math-Net.Ru
We present a number of upper and low bounds for the total variation distances between the most popular probability distributions. In particular, some estimates of the total variation distances between one-dimensional Gaussian distributions, between two Poisson distributions, between two binomial distributions, between a binomial and a Poisson distribution, and also between two negative binomial distributions are given. The Kolmogorov – Smirnov distance is also presented.
@article{ISU_2022_22_2_a9,
author = {M. Ya. Kelbert and Yu. M. Sukhov},
title = {What scientific folklore knows about the distances between the~most~popular distributions},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {233--240},
year = {2022},
volume = {22},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a9/}
}
TY - JOUR AU - M. Ya. Kelbert AU - Yu. M. Sukhov TI - What scientific folklore knows about the distances between the most popular distributions JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 233 EP - 240 VL - 22 IS - 2 UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a9/ LA - en ID - ISU_2022_22_2_a9 ER -
%0 Journal Article %A M. Ya. Kelbert %A Yu. M. Sukhov %T What scientific folklore knows about the distances between the most popular distributions %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2022 %P 233-240 %V 22 %N 2 %U http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a9/ %G en %F ISU_2022_22_2_a9
M. Ya. Kelbert; Yu. M. Sukhov. What scientific folklore knows about the distances between the most popular distributions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 2, pp. 233-240. http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a9/
[1] Suhov Yu., Kelbert M., Probability and Statistics by Example, v. I, Basic Probability and Statistics, 2nd ed., Cambridge University Press, Cambridge, UK, 2014, 470 pp. | DOI
[2] Pinsker M., Information and Information Stability of Random Variables and Processes, Holden-Day Inc, San Francisco, USA, 1964, 243 pp.
[3] Le Cam L., Asymptotic Methods in Statistical Decision Theory, Springer Series in Statistics, Springer, New York, NY, 1986, 742 pp. | DOI
[4] Le Cam L., “An approximation theorem for the Poisson binomial distribution”, Pacific Journal of Mathematics, 10:4 (1960), 1181–1197 | DOI
[5] Devroye L., Mehrabian A., Reddad T., The total variation distance between high-dimensional Gaussians, 2020, 12 pp., arXiv: 1810.08693v5