What scientific folklore knows about the distances between the~most~popular distributions
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 2, pp. 233-240

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a number of upper and low bounds for the total variation distances between the most popular probability distributions. In particular, some estimates of the total variation distances between one-dimensional Gaussian distributions, between two Poisson distributions, between two binomial distributions, between a binomial and a Poisson distribution, and also between two negative binomial distributions are given. The Kolmogorov – Smirnov distance is also presented.
@article{ISU_2022_22_2_a9,
     author = {M. Ya. Kelbert and Yu. M. Sukhov},
     title = {What scientific folklore knows about the distances between the~most~popular distributions},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {233--240},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a9/}
}
TY  - JOUR
AU  - M. Ya. Kelbert
AU  - Yu. M. Sukhov
TI  - What scientific folklore knows about the distances between the~most~popular distributions
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2022
SP  - 233
EP  - 240
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a9/
LA  - en
ID  - ISU_2022_22_2_a9
ER  - 
%0 Journal Article
%A M. Ya. Kelbert
%A Yu. M. Sukhov
%T What scientific folklore knows about the distances between the~most~popular distributions
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2022
%P 233-240
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a9/
%G en
%F ISU_2022_22_2_a9
M. Ya. Kelbert; Yu. M. Sukhov. What scientific folklore knows about the distances between the~most~popular distributions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 2, pp. 233-240. http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a9/