@article{ISU_2022_22_2_a0,
author = {N. A. Gureeva and R. Z. Kiseleva and Yu. V. Klochkov and A. P. Nikolaev},
title = {On the approximation of class $C^{(0)}$ components of physical quantities in curved coordinate systems},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {142--151},
year = {2022},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a0/}
}
TY - JOUR
AU - N. A. Gureeva
AU - R. Z. Kiseleva
AU - Yu. V. Klochkov
AU - A. P. Nikolaev
TI - On the approximation of class $C^{(0)}$ components of physical quantities in curved coordinate systems
JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY - 2022
SP - 142
EP - 151
VL - 22
IS - 2
UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a0/
LA - ru
ID - ISU_2022_22_2_a0
ER -
%0 Journal Article
%A N. A. Gureeva
%A R. Z. Kiseleva
%A Yu. V. Klochkov
%A A. P. Nikolaev
%T On the approximation of class $C^{(0)}$ components of physical quantities in curved coordinate systems
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2022
%P 142-151
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a0/
%G ru
%F ISU_2022_22_2_a0
N. A. Gureeva; R. Z. Kiseleva; Yu. V. Klochkov; A. P. Nikolaev. On the approximation of class $C^{(0)}$ components of physical quantities in curved coordinate systems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 2, pp. 142-151. http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a0/
[1] Novozhilov V. V., Theory of Thin Shells, Sudpromgiz, L., 1962, 432 pp. (in Russian)
[2] Galimov K. Z., Paimushin V. N., The Theory of Shells of Complex Geometry, Kazan University Publ, Kazan, 1985, 164 pp. (in Russian)
[3] Sedov L. I., Continuum Mechanics, v. 1, Nauka, M., 1976, 535 pp. (in Russian)
[4] Golovanov A. I., Tyuleneva O. N., Shigabutdinov A. F., Finite Element Method in Statics and Dynamics of Thin-Walled Structures, Fizmatlit, M., 2006, 392 pp. (in Russian)
[5] Oden J., Finite Elements in Nonlinear Continuum Mechanics, Mir, M., 1976, 464 pp. (in Russian)
[6] Rickards R. B., The Finite Element Method in the Theory of Shells and Plates, Zinatne, Riga, 1988, 284 pp. (in Russian)
[7] Bate K. Yu., Finite Element Methods, Fizmatlit, M., 2010, 1024 pp. (in Russian)
[8] Gureeva N. A., Klochkov Y. V., Nikolaev A. P., “Analysis of a shell of revolution subjected to axisymmetric loading taking into account geometric nonlinearity on the basis of the mixed finite element method”, Russian Aeronautics, 57:3 (2014), 232–239 | DOI
[9] Gureeva N. A., Klochkov Y. V., Nikolaev A. P., “Analysis of an arbitrarily loaded shell of revolution based on the finite element method in a mixed formulation”, Russian Aeronautics, 53:3 (2010), 250–256 | DOI
[10] Krivoshapko S. N., Encyclopedia of Analytical Surfaces: More than 500 Surfaces, 38 Classes: Mathematicians, Engineers, Architects, URSS, M., 2010, 500 pp. (in Russian)