Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2022_22_2_a0, author = {N. A. Gureeva and R. Z. Kiseleva and Yu. V. Klochkov and A. P. Nikolaev}, title = {On the approximation of class $C^{(0)}$ components of physical quantities in curved coordinate systems}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {142--151}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a0/} }
TY - JOUR AU - N. A. Gureeva AU - R. Z. Kiseleva AU - Yu. V. Klochkov AU - A. P. Nikolaev TI - On the approximation of class $C^{(0)}$ components of physical quantities in curved coordinate systems JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 142 EP - 151 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a0/ LA - ru ID - ISU_2022_22_2_a0 ER -
%0 Journal Article %A N. A. Gureeva %A R. Z. Kiseleva %A Yu. V. Klochkov %A A. P. Nikolaev %T On the approximation of class $C^{(0)}$ components of physical quantities in curved coordinate systems %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2022 %P 142-151 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a0/ %G ru %F ISU_2022_22_2_a0
N. A. Gureeva; R. Z. Kiseleva; Yu. V. Klochkov; A. P. Nikolaev. On the approximation of class $C^{(0)}$ components of physical quantities in curved coordinate systems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 2, pp. 142-151. http://geodesic.mathdoc.fr/item/ISU_2022_22_2_a0/
[1] Novozhilov V. V., Theory of Thin Shells, Sudpromgiz, L., 1962, 432 pp. (in Russian)
[2] Galimov K. Z., Paimushin V. N., The Theory of Shells of Complex Geometry, Kazan University Publ, Kazan, 1985, 164 pp. (in Russian)
[3] Sedov L. I., Continuum Mechanics, v. 1, Nauka, M., 1976, 535 pp. (in Russian)
[4] Golovanov A. I., Tyuleneva O. N., Shigabutdinov A. F., Finite Element Method in Statics and Dynamics of Thin-Walled Structures, Fizmatlit, M., 2006, 392 pp. (in Russian)
[5] Oden J., Finite Elements in Nonlinear Continuum Mechanics, Mir, M., 1976, 464 pp. (in Russian)
[6] Rickards R. B., The Finite Element Method in the Theory of Shells and Plates, Zinatne, Riga, 1988, 284 pp. (in Russian)
[7] Bate K. Yu., Finite Element Methods, Fizmatlit, M., 2010, 1024 pp. (in Russian)
[8] Gureeva N. A., Klochkov Y. V., Nikolaev A. P., “Analysis of a shell of revolution subjected to axisymmetric loading taking into account geometric nonlinearity on the basis of the mixed finite element method”, Russian Aeronautics, 57:3 (2014), 232–239 | DOI
[9] Gureeva N. A., Klochkov Y. V., Nikolaev A. P., “Analysis of an arbitrarily loaded shell of revolution based on the finite element method in a mixed formulation”, Russian Aeronautics, 53:3 (2010), 250–256 | DOI
[10] Krivoshapko S. N., Encyclopedia of Analytical Surfaces: More than 500 Surfaces, 38 Classes: Mathematicians, Engineers, Architects, URSS, M., 2010, 500 pp. (in Russian)