Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2022_22_1_a6, author = {A. I. Romanov and I. A. Batraeva}, title = {Attention based collaborative filtering}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {103--111}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a6/} }
TY - JOUR AU - A. I. Romanov AU - I. A. Batraeva TI - Attention based collaborative filtering JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2022 SP - 103 EP - 111 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a6/ LA - en ID - ISU_2022_22_1_a6 ER -
A. I. Romanov; I. A. Batraeva. Attention based collaborative filtering. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 22 (2022) no. 1, pp. 103-111. http://geodesic.mathdoc.fr/item/ISU_2022_22_1_a6/
[1] Gomes-Uribe C. A., Hant N., “The Netflix Recommender System: Algorithms, Business Value, and Innovation”, ACM Transactions on Management Information Systems, 6:4 (2016), 1–19 | DOI
[2] Liu S., Bismas P. K., “A Hybrid Recommender System for Recommending Smartphones to Prospective Customers”, CoRR, 23 (2021), 2–3
[3] Strömqvist Z., Matrix factorization in recommender systems. How sensitive are matrix factorization models to sparsity?, Department of Statistics Uppsala University, 2018, 26 pp.
[4] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, Tat-Seng Chua, “Attentive Collaborative Filtering: Multimedia Recommendation with Item- and Component-Level Attention”, Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, v. 10, 2017, 335–344 | DOI
[5] Wang K., Peng H., Jin Y., Sha Ch., Wang X., “Local Weighted Matrix Factorization for Top-$n$ Recommendation with Implicit Feedback”, Data Science and Engineering, 1 (2016), 252–264 | DOI
[6] Rendle S., Freudenthaler C., Gantner Z., Schmidt-Thieme L., “Bayesian Personalized Ranking from Implicit Feedback”, Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, v. 10, 2009, 452–461
[7] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, Tat-Seng Chua, “Neural Collaborative Filtering”, Proceedings of the 26th International Conference on World Wide Web, v. 10, 2017, 173–182 | DOI
[8] Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., Kaiser L., Polosukhin I., “Attention is all you need”, Conference on Neural Information Processing Systems, 15 (2017), 4–5
[9] Mingsheng F., Hong Q., Dagmawi M., Li L., “Attention based collaborative filtering”, Neurocomputing, 311 (2018), 88–98 | DOI
[10] Veličković P., Casanova A., Lio P., Cucurull G., Romero A., Bengio Y., “Graph attention networks”, Conference Track Proceedings, 6$^{th}$ International Conference on Learning Representations, ICLR 2018, v. 12, 2018, 2–3 | DOI
[11] Harper F. M., Konstan J. A., “The MovieLens Datasets: History and Context”, ACM Transactions on Interactive Intelligent Systems, 5:4 (2015), 1–19 | DOI
[12] Rendle S., Zhang L., Koren Y., On the Difficulty of Evaluating Baselines, 3 pp., arXiv: 1905.01395