@article{ISU_2021_21_4_a3,
author = {I. I. Strukova},
title = {Harmonic analysis of functions almost periodic at infinity {in~Banach} modules},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {448--457},
year = {2021},
volume = {21},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a3/}
}
TY - JOUR AU - I. I. Strukova TI - Harmonic analysis of functions almost periodic at infinity in Banach modules JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2021 SP - 448 EP - 457 VL - 21 IS - 4 UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a3/ LA - ru ID - ISU_2021_21_4_a3 ER -
I. I. Strukova. Harmonic analysis of functions almost periodic at infinity in Banach modules. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 4, pp. 448-457. http://geodesic.mathdoc.fr/item/ISU_2021_21_4_a3/
[1] Baskakov A. G., “Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations”, Izvestiya: Mathematics, 73:2 (2009), 215–278 | DOI | DOI
[2] Baskakov A. G., Strukov V. E., Strukova I. I., “Harmonic analysis of functions in homogeneous spaces and harmonic distributions that are periodic or almost periodic at infinity”, Sbornik: Mathematics, 210:10 (2019), 1380–1427 | DOI | DOI
[3] Strukov V. E., Strukova I. I., “About four definitions of almost periodic at infinity functions from homogeneous space”, Belgorod State University Scientific Bulletin. Mathematis Physis, 50:3 (2018), 254–264 (in Russian) | DOI
[4] Baskakov A. G., “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russian Mathematical Surveys, 68:1 (2013), 69–116 | DOI | DOI
[5] Baskakov A. G., Krishtal I. A., “Harmonic analysis of causal operators and their spectral properties”, Izvestiya: Mathematics, 69:3 (2005), 439–486 | DOI | DOI
[6] Baskakov A. G., “Representation theory for Banach algebras, Abelian groups, and semigroups in the spectral analysis of linear operators”, Journal of Mathematical Sciences, 137:4 (2006), 4885–5036 | DOI
[7] Hewitt E., Ross K. A., Abstract Harmonic Analysis, v. 2, Springer, 1963, 771 pp.
[8] Baskakov A. G., “Harmonic analysis of cosine and exponential operator-valued functions”, Mathematics of the USSR-Sbornik, 52:1 (1985), 63–90 | DOI