Construction of 3D solid vertebral models using convolutional neural networks
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 3, pp. 368-378.

Voir la notice de l'article provenant de la source Math-Net.Ru

The quality of solving the problem of biomechanical modeling largely depends on the created solid-state model of the biological object under study. Building a model based on computed tomography data for a particular patient is possible both in manual mode (software packages for processing medical images) and using automated tools for building a model (image segmentation), which significantly speeds up the process of creating a solid model, in contrast to the manual mode. The complexity of the automated approach lies in the reconstruction of a segmented image into a solid model suitable for biomechanical modeling. As a rule, automatic segmentation is hampered by the presence of anatomical pathologies, noise, and the presence of implants in the images of a digital study. The article proposes a method for creating a solid model from a point cloud obtained from computed tomography data using convolutional neural networks SpatialConfiguration-Net and U-Net. The results of the implementation were applied in the development of the “Module of Solid Models”, which is included in the prototype of the medical decision support system SmartPlan Ortho 3D, which is being developed at Saratov State University within the framework of the project of the Foundation for Advanced Research. The system is included in the register of Russian software.
@article{ISU_2021_21_3_a8,
     author = {A. S. Beskrovny and L. V. Bessonov and D. V. Ivanov and V. S. Zolotov and D. A. Sidorenko and I. V. Kirillova and L. Yu. Kossovich},
     title = {Construction of {3D} solid vertebral models using convolutional neural networks},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {368--378},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a8/}
}
TY  - JOUR
AU  - A. S. Beskrovny
AU  - L. V. Bessonov
AU  - D. V. Ivanov
AU  - V. S. Zolotov
AU  - D. A. Sidorenko
AU  - I. V. Kirillova
AU  - L. Yu. Kossovich
TI  - Construction of 3D solid vertebral models using convolutional neural networks
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2021
SP  - 368
EP  - 378
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a8/
LA  - ru
ID  - ISU_2021_21_3_a8
ER  - 
%0 Journal Article
%A A. S. Beskrovny
%A L. V. Bessonov
%A D. V. Ivanov
%A V. S. Zolotov
%A D. A. Sidorenko
%A I. V. Kirillova
%A L. Yu. Kossovich
%T Construction of 3D solid vertebral models using convolutional neural networks
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2021
%P 368-378
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a8/
%G ru
%F ISU_2021_21_3_a8
A. S. Beskrovny; L. V. Bessonov; D. V. Ivanov; V. S. Zolotov; D. A. Sidorenko; I. V. Kirillova; L. Yu. Kossovich. Construction of 3D solid vertebral models using convolutional neural networks. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 3, pp. 368-378. http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a8/

[1] Roth H. R., Le Lu, Lay N., Harrison A. P., Farag A., Sohn A., Summers R. M., “Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation”, Medical Image Analysis, 45 (2017), 94–107 | DOI

[2] Roth H. R., Hirohisa Oda, Xiangrong Zhou, Natsuki Shimizu, YingYang, Yuichiro Hayashi, Masahiro Oda, Michitaka Fujiwara, Kazunari Misawa, Kensaku Mori, “An application of cascaded 3D fully convolutional networks for medical image segmentation”, Computerized Medical Imaging and Graphics, 66 (2018), 90–99 | DOI

[3] Hongya Lu, Haifeng Wang, Qianqian Zhang, Sang Won Yoon, Daehan Won, “A 3D convolutional neural network for volumetric image semantic segmentation”, Procedia Manufacturing, 39 (2019), 422–428 | DOI

[4] Payer C., Štern D., Bischof H., Urschler M., “Coarse to fine vertebrae localization and segmentation with SpatialConfiguration-Net and U-Net”, Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (Malta, Valletta, 2020), v. 5, VISAPP, 2020, 124–133 | DOI

[5] Kingma D., Ba J., Adam: A method for stochastic optimization, 30 Jan 2017, 15 pp., arXiv: 1412.6980v9 [cs.LG] | Zbl

[6] Nesterov Yu. E., “A method for solving the convex programming problem with convergence rate $O(1/k\sp{2})$”, Doklady Akademii Nauk SSSR, 269:3 (1983), 543–547 (in Russian) | Zbl

[7] Lorensen W. E., Cline H. E., “Marching cubes: A high resolution 3D surface construction algorithm”, ACM SIGGRAPH Computer Graphics, 21:4 (1987), 163–169 | DOI

[8] Bugrov N. V., Golubev V. I., Dizhevsky A.Yu., Kakauridze D. G., Klimenko A. S., Oboymov A. S., Frolov P. V., “Review of algorithms for triangulating an implicitly defined surface”, Proceedings of the International Scientific Conference MEDIAS2012 (Limasol, Republic of Cyprus, 2012), 2012, 151–173 (in Russian)

[9] Skvortsov A. V., Delaunay Triangulation and Its Application, Izd-vo TGU, Tomsk, 2002, 128 pp. (in Russian)

[10] Hansen G. A., Douglass R. W., Zardecki A., Mesh Enhancement, Default Book Series, Imperial College Press, 2005, 532 pp. | DOI | Zbl

[11] Li Yao, Shihui Huang, Hui Xu, Peilin Li, “Quadratic error metric mesh simplification algorithm based on discrete curvature”, Mathematical Problems in Engineering, 2015 (2015), 428917 | DOI | Zbl

[12] Beskrovny A. S., Bessonov L. V., Ivanov D. V., Kirillova I. V., Kossovich L. Yu., “Using a convolutional neural network to automate the construction of two-dimensional solid-state models of vertebrae”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 20:4 (2020), 502–516 (in Russian) | DOI

[13] Ivanov D. V., Kirillova I. V., Kossovich L. Yu., Bessonov L. V., Petraikin A. V., Dol A. V., Ahmad E. S., Morozov S. P., Vladzymyrskyy A. V., Sergunova K. A., Kharlamov A. V., “Influence of convolution kernel and beam-hardening effect on the assessment of trabecular bone mineral density using quantitative computed tomography”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 20:2 (2020), 205–219 | DOI