Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2021_21_3_a3, author = {D. V. Prokhorov and A. M. Zakharov and A. V. Zherdev}, title = {Solutions of the {Loewner} equation with combined driving functions}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {317--325}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a3/} }
TY - JOUR AU - D. V. Prokhorov AU - A. M. Zakharov AU - A. V. Zherdev TI - Solutions of the Loewner equation with combined driving functions JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2021 SP - 317 EP - 325 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a3/ LA - en ID - ISU_2021_21_3_a3 ER -
%0 Journal Article %A D. V. Prokhorov %A A. M. Zakharov %A A. V. Zherdev %T Solutions of the Loewner equation with combined driving functions %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2021 %P 317-325 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a3/ %G en %F ISU_2021_21_3_a3
D. V. Prokhorov; A. M. Zakharov; A. V. Zherdev. Solutions of the Loewner equation with combined driving functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 3, pp. 317-325. http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a3/
[1] Löwner K., “Untersuchungen über schlichte konforme Abbildungen des Einheitskreses. I”, Mathematische Annalen, 89:1–2 (1923), 103–121 (in Germany) | DOI | Zbl
[2] Lawler G. F., Conformally Invariant Processes in the Plane, Mathematical Surveys and Monographs, 114, American Mathematical Society, Princeton, 2005, 242 pp. | Zbl
[3] Kager W., Nienhuis B., Kadanoff L. P., “Exact solutions for Loewner evolutions”, Journal of Statistical Physics, 115:3–4 (2004), 805–822 | DOI | Zbl
[4] Lind J. R., “A sharp condition for the Loewner equation to generate slits”, Annales Academiae Scientiarum Fennicae. Mathematica, 30:1 (2005), 143–158 | Zbl
[5] Prokhorov D. V., Zakharov A. M., “Integrability of a partial case of the Loewner equation”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 10:2 (2010), 19–23 (in Russian) | DOI
[6] Prokhorov D., Vasil'ev A., “Singular and tangent slit solutions to the Löwner equation”, Analysis and Mathematical Physics, Trends in Mathematics, eds. Gustafsson B., Vasil'ev A., Birkhäuser, Basel, 2009, 455–463 | DOI | Zbl
[7] Lau K. S., Wu H. H., “On tangential slit solution of the Loewner equation”, Annales Academiae Scientiarum Fennicae. Mathematica, 41 (2016), 681–691 | DOI | Zbl
[8] Wu H. H., Jiang Y. P., Dong X. H., “Perturbation of the tangential slit by conformal maps”, Journal of Mathematical Analysis and Applications, 464:2 (2018), 1107–1118 | DOI | Zbl
[9] Wu H. H., “Exact solutions of the Loewner equation”, Analysis and Mathematical Physics, 10:4 (2020), 59 | DOI