Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2021_21_3_a2, author = {N. P. Mozhey}, title = {Non-reductive spaces with equiaffine connections of nonzero curvature}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {305--316}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a2/} }
TY - JOUR AU - N. P. Mozhey TI - Non-reductive spaces with equiaffine connections of nonzero curvature JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2021 SP - 305 EP - 316 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a2/ LA - ru ID - ISU_2021_21_3_a2 ER -
N. P. Mozhey. Non-reductive spaces with equiaffine connections of nonzero curvature. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 3, pp. 305-316. http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a2/
[1] Skott P., Geometries on Three-dimensional Manifolds, Mir, M., 1986, 163 pp. (in Russian)
[2] Cartan E., La géométrie des espaces de Riemann, Mémorial des sciences mathématiques, 9, Gauthier-Villars et C$^{\textrm{o}}$, Paris, 1925, 64 pp. (in French)
[3] Alekseyevskiy D. V., Vinogradov A. M., Lychagin V. V., “Basic ideas and concepts of differential geometry”, Itogi Nauki i Tekhniki. Seriya: Sovremennye Problemy Matematiki. Fundamental'nye Napravleniya, 28, VINITI, M., 1988, 5–289 (in Russian)
[4] Mozhey N. P., “Connections of nonzero curvature on three-dimensional non-reductive spaces”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 17:4 (2017), 381–393 (in Russian) | DOI | Zbl
[5] Onishchik A. L., Topology of Transitive Transformation Groups, Fizmatlit, M., 1995, 384 pp. (in Russian)
[6] Nomizu K., “Invariant affine connections on homogeneous spaces”, American Journal of Mathematics, 76:1 (1954), 33–65 | DOI | Zbl
[7] Kobayashi S., Nomizu K., Foundations of Differential Geometry, in 2 vols, v. 2, John Wiley and Sons, New York, 1969, 488 pp. | Zbl
[8] Nomizu K., Sasaki T., Affine Differential Geometry: Geometry of Affine Immersions, Cambridge Univ. Press, Cambridge–New York, 1994, 264 pp.
[9] Mozhey N. P., “Three-dimensional homogeneous spaces, not admitting invariant connections”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 16:4 (2016), 413–421 (in Russian) | DOI | Zbl
[10] Rashevski P. K., “Symmetric spaces of affine connection with torsion”, Proceedings of the Seminar on Vector and Tensor Analysis, 8, 1969, 82–92 (in Russian)