Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2021_21_3_a12, author = {S. N. Chukanov}, title = {The key exchange protocol based on non-commutative elements {of~Clifford} algebra}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {408--418}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a12/} }
TY - JOUR AU - S. N. Chukanov TI - The key exchange protocol based on non-commutative elements of~Clifford algebra JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2021 SP - 408 EP - 418 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a12/ LA - ru ID - ISU_2021_21_3_a12 ER -
%0 Journal Article %A S. N. Chukanov %T The key exchange protocol based on non-commutative elements of~Clifford algebra %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2021 %P 408-418 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a12/ %G ru %F ISU_2021_21_3_a12
S. N. Chukanov. The key exchange protocol based on non-commutative elements of~Clifford algebra. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 3, pp. 408-418. http://geodesic.mathdoc.fr/item/ISU_2021_21_3_a12/
[1] Diffie W., Hellman M. E., “New directions in cryptography”, IEEE Transactions on Information Theory, 22:6 (1976), 644–654 | DOI | Zbl
[2] Anshel I., Anshel M., Goldfeld D., “An algebraic method for public-key cryptography”, Mathematics Research Letter, 6:3 (1999), 287–291 | DOI | Zbl
[3] Hecht P., “Un modelo compacto de criptografia asimetrica empleando anillos no conmutativos”, Actas del V Congreso Iberoamericano de Seguridad Informatica CIBSI'09, 2009, 188–201
[4] Ki Hyoung Ko, Sang Jin Lee, Jung Hee Cheon, Jae Woo Han, Ju-sung Kang, Choonsik Park, “New public-key cryptosystem using braid group”, Advances in Cryptology – CRYPTO 2000, Lecture Notes in Computer Science, 1880, ed. M. Bellare, Springer, Berlin–Heidelberg, 2000, 166–183 | DOI | Zbl
[5] Miasnikov A. G., Shpilrain V., Ushakov A., Non-Commutative Cryptography and Complexity of Group-Theoretic Problems, Mathematical Surveys and Monographs, 177, AMS, 2011, 385 pp. | DOI | Zbl
[6] Kamlofsky J. A., Hecht J. P., Masih S., Izzi O., “A Diffie – Hellman compact model over non-commutative rings using quaternions”, MEMORIAS CIBSI 2015 (VIII Congreso Iberoamericano de Seguridad Informatica) (Quito, Ecuador, 2015), 2015, 6 pp. (in Spain) | DOI
[7] Bayro-Corrochano E., Geometric Algebra Applications, in 2 vols, v. 1, Computer Vision, Graphics and Neurocomputing, Springer, 2020, 742 pp. | DOI | Zbl
[8] Bayro-Corrochano E., Geometric Algebra Applications, in 2 vols, v. 2, Robot Modelling and Control, Springer, 2020, 600 pp. | DOI | Zbl
[9] Hamilton W. R., Elements of Quaternions, Longmans, Green, Co, London, UK, 1866, 762 pp.
[10] Branets V N., Shmyglevsky I. P., Introduction to the Theory of Strapdown Inertial Navigation System, Nauka, M., 1992, 280 pp. (in Russian)
[11] Chelnokov Yu. N., “Quaternion regularization in celestial mechanics and astrodynamics and trajectory motion control. I”, Cosmic Research, 51:5 (2013), 350–361 | DOI | DOI
[12] Chelnokov Yu. N., “Quaternion regularization in celestial mechanics and astrodynamics and trajectory motion control. II”, Cosmic Research, 52:4 (2014), 304–317 | DOI | DOI
[13] Chelnokov Yu. N., “Quaternion regularization in celestial mechanics and astrodynamics and trajectory motion control. III”, Cosmic Research, 53:5 (2015), 394–4097 | DOI | DOI
[14] Baez J. C., “The octonions”, Bulletin of the American Mathematical Society, 39:2 (2002), 145–205 | DOI | Zbl
[15] Clifford W. K., “Applications of Grassmann's extensive algebra”, American Journal of Mathematics, 1:4 (1878), 350–358 | DOI | Zbl
[16] Clifford W. K., “Preliminary sketch of biquaternions”, Proceedings of the London Mathematical Society, s1-4:1 (1873), 381–395 | DOI | Zbl
[17] Clifford Multivector Toolbox, , 2020 (accessed 15 July 2020) http://clifford-multivector-toolbox.sourceforge.net/
[18] Sangwine S. J., Hitzer E., “Clifford multivector toolbox (for MATLAB)”, Advances in Applied Clifford Algebras, 27:1 (2017), 539–558 | DOI | Zbl
[19] Mann S., Dorst L., Bouma T., “The making of GABLE: A geometric algebra package in Matlab”, Geometric Algebra with Applications in Science and Engineering, eds. E. Bayro-Corrochano, G. Sobczyk, Birkhäuser, Boston, 2001, 491–511 | DOI
[20] Ablamowicz R., Fauser B., Clifford/Bigebra, a Maple package for Clifford (co)algebra computations (accessed 15 July 2020) http://www.math.tntech.edu/rafal/