Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2021_21_2_a8, author = {A. L. Smirnov and G. P. Vasiliev}, title = {Free vibration frequencies of a circular thin plate with nonlinearly perturbed parameters}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {227--237}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a8/} }
TY - JOUR AU - A. L. Smirnov AU - G. P. Vasiliev TI - Free vibration frequencies of a circular thin plate with nonlinearly perturbed parameters JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2021 SP - 227 EP - 237 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a8/ LA - ru ID - ISU_2021_21_2_a8 ER -
%0 Journal Article %A A. L. Smirnov %A G. P. Vasiliev %T Free vibration frequencies of a circular thin plate with nonlinearly perturbed parameters %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2021 %P 227-237 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a8/ %G ru %F ISU_2021_21_2_a8
A. L. Smirnov; G. P. Vasiliev. Free vibration frequencies of a circular thin plate with nonlinearly perturbed parameters. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 2, pp. 227-237. http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a8/
[1] Leissa A. W., Vibration of plates, Government Printing Office, Washington, US, 1969, 353 pp.
[2] Bauer S. M., Filippov S. B., Smirnov A. L., Tovstik P. E., Vaillancourt R., Asymptotic methods in mechanics of solids, Birkhäuser, Basel, 2015, 325 pp. | DOI | MR | Zbl
[3] Vasiliev G. P., Smirnov A. L., “Free vibration frequencies of a circular thin plate with variable parameters”, Vestnik St. Petersburg University. Mathematics, 53:3 (2020), 351–357 | DOI | MR | Zbl
[4] Smirnov A. L., “Free vibrations of annular circular and elliptic plates”, COMPDYN Proceedings, v. 2, 2019, 3547–3555
[5] Eisenberger M., Jabareen M., “Axisymmetric vibrations of circular and annular plates with variable thickness”, International Journal of Structural Stability and Dynamics, 1:2 (2001), 195–206 | DOI | MR | Zbl
[6] Prasad C., Jain R. K., Soni S. R., “Axisymmetric vibrations of circular plates of linearly varying thickness”, Journal of Applied Mathematics and Physics (ZAMP), 23 (1972), 941–948 | DOI | Zbl
[7] Singh B., Saxena V., “Axisymmetric vibration of a circular plate with exponential thickness variation”, Journal of Sound and Vibration, 192:1 (1996), 35–42 | DOI | Zbl
[8] Bauer S. M., Voronkova E. B., “On natural frequencies of transversally isotropic circular plates”, Vestnik St. Petersburg University. Mathematics, 49:1 (2016), 77–80 | DOI | MR | Zbl
[9] Anikina T. A., Vatulyan A. O., Uglich P. S., “On the calculation of variable stiffness for a circular plate”, Computational Technologies, 17:6 (2012), 26–35 (in Russian)
[10] Bauer S. M., Voronkova E. B., “On the unsymmetrical buckling of shallow spherical shells under internal pressure”, Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, 18:4 (2018), 390–396 (in Russian) | DOI | MR