Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2021_21_2_a5, author = {I. A. Pankratov}, title = {Approximation of the orientation equations of the orbital coordinate system by the weighted residuals method}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {194--201}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a5/} }
TY - JOUR AU - I. A. Pankratov TI - Approximation of the orientation equations of the orbital coordinate system by the weighted residuals method JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2021 SP - 194 EP - 201 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a5/ LA - ru ID - ISU_2021_21_2_a5 ER -
%0 Journal Article %A I. A. Pankratov %T Approximation of the orientation equations of the orbital coordinate system by the weighted residuals method %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2021 %P 194-201 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a5/ %G ru %F ISU_2021_21_2_a5
I. A. Pankratov. Approximation of the orientation equations of the orbital coordinate system by the weighted residuals method. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 2, pp. 194-201. http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a5/
[1] Chelnokov Yu. N., “Application of quaternions in the theory of orbital motion of an artificial satellite. I”, Cosmic Research, 30:6 (1992), 612–621
[2] Pankratov I. A., Sapunkov Ya. G., Chelnokov Yu. N., “Solution of a problem of spacecraft's orbit optimal reorientation using quaternion equations of orbital system of coordinates orientation”, Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, 13:1-1 (2013), 84–92 (in Russian) | DOI | Zbl
[3] Branets V. N., Shmyglevskii I. P., Use of Quaternions in the Problems of Orientation of Solid Bodies, Nauka, M., 1973, 320 pp. (in Russian) | MR
[4] Zubov V. I., Analytical Dynamics of Gyroscopic Systems, Sudostroenie, Leningrad, 1970, 317 pp. (in Russian)
[5] Molodenkov A. V., “On the solution of the Darboux problem”, Mechanics of Solids, 42:2 (2007), 167–176 | DOI
[6] Pontriagin L. S., Boltianskii V. G., Gamkrelidze R. V., Mishchenko E. F., The Mathematical Theory of Optimal Processes, Nauka, M., 1983, 393 pp. (in Russian) | MR
[7] Chelnokov Yu. N., “Optimal reorientation of a spacecraft's orbit using a jet thrust orthogonal to the orbital plane”, Journal of Applied Mathematics and Mechanics, 76:6 (2012), 646–657 | DOI | MR | Zbl
[8] Chelnokov Yu. N. On determining vehicle orientation in the Rodrigues – Hamilton parameters from its angular velocity, Mechanics of Solids, 37:3 (1977), 8–16
[9] Zienkiewicz O., Morgan K., Finite Elements and Approximation, John Wiley and Sons, New York–Chichester–Brisbane–Toronto, 1983, 328 pp. | MR | MR | Zbl
[10] Connor J. J., Brebbia C. A., Finite Element Techniques for Fluid Flow, Newnes-Butterworths, London–Boston, 1977, 310 pp.
[11] Dirac P. A. M., The Principles of Quantum Mechanics, Clarendon Press, Oxford, 1967, 324 pp. | MR
[12] Moiseev N. N., Numerical Methods in the Theory of Optimal Systems, Nauka, M., 1971, 424 pp. (in Russian)
[13] Pankratov I. A., “Analytical solution of equations of near-circular spacecraft's orbit orientation”, Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, 15:1 (2015), 97–105 (in Russian) | DOI | Zbl