Numerical solution of linear differential equations with~discontinuous coefficients and Henstock integral
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 2, pp. 151-161

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of approximate solution of linear differential equations with discontinuous coefficients. We assume that these coefficients have $f$-primitive. It means that these coefficients are Henstock integrable only. Instead of the original Cauchy problem, we consider a different problem with piecewise-constant coefficients. The sharp solution of this new problem is the approximate solution of the original Cauchy problem. We found the degree of approximation in terms of $f$-primitive for Henstock integrable coefficients. Two examples are given. In the first example, the coefficients have an infinite derivative at zero. In the second example, the coefficients have an infinite derivative at interior points.
@article{ISU_2021_21_2_a1,
     author = {S. F. Lukomskii and D. S. Lukomskii},
     title = {Numerical solution of linear differential equations with~discontinuous coefficients and {Henstock} integral},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {151--161},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a1/}
}
TY  - JOUR
AU  - S. F. Lukomskii
AU  - D. S. Lukomskii
TI  - Numerical solution of linear differential equations with~discontinuous coefficients and Henstock integral
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2021
SP  - 151
EP  - 161
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a1/
LA  - en
ID  - ISU_2021_21_2_a1
ER  - 
%0 Journal Article
%A S. F. Lukomskii
%A D. S. Lukomskii
%T Numerical solution of linear differential equations with~discontinuous coefficients and Henstock integral
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2021
%P 151-161
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a1/
%G en
%F ISU_2021_21_2_a1
S. F. Lukomskii; D. S. Lukomskii. Numerical solution of linear differential equations with~discontinuous coefficients and Henstock integral. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 2, pp. 151-161. http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a1/