Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2021_21_2_a1, author = {S. F. Lukomskii and D. S. Lukomskii}, title = {Numerical solution of linear differential equations with~discontinuous coefficients and {Henstock} integral}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {151--161}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a1/} }
TY - JOUR AU - S. F. Lukomskii AU - D. S. Lukomskii TI - Numerical solution of linear differential equations with~discontinuous coefficients and Henstock integral JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2021 SP - 151 EP - 161 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a1/ LA - en ID - ISU_2021_21_2_a1 ER -
%0 Journal Article %A S. F. Lukomskii %A D. S. Lukomskii %T Numerical solution of linear differential equations with~discontinuous coefficients and Henstock integral %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2021 %P 151-161 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a1/ %G en %F ISU_2021_21_2_a1
S. F. Lukomskii; D. S. Lukomskii. Numerical solution of linear differential equations with~discontinuous coefficients and Henstock integral. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 2, pp. 151-161. http://geodesic.mathdoc.fr/item/ISU_2021_21_2_a1/
[1] Ohkita M., Kobayashi Y., “An application of rationalized Haar functions to solution of linear differential equations”, IEEE Transactions on Circuit and Systems, 33:9 (1968), 853–862 | DOI
[2] Razzaghi M., Ordokhani Y., “Solution of differential equations via rationalized Haar functions”, Mathematics and Computers in Simulation, 56:3 (2001), 235–246 | DOI | MR | Zbl
[3] Razzaghi M., Ordokhani Y., “An application of rationalized Haar functions for variational problems”, Applied Mathematics and Computation, 122:3 (2001), 353–364 | DOI | MR | Zbl
[4] Gat G., Toledo R., “A numerical method for solving linear differential equations via Walsh functions”, Advances in Information Science and Applications, Proceedings of the 18th International Conference on Computers (part of CSCC '14), v. I, II, 2014, 334–339
[5] Gat G., Toledo R., “Estimating the error of the numerical solution of linear differential equations with constant coefficients via Walsh polynomials”, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 31:2 (2015), 309–330 | MR | Zbl
[6] Lukomskii D. S., Lukomskii S. F., Terekhin P. A., “Solution of Cauchy problem for equation first order via Haar functions”, Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, 16:2 (2016), 151–159 (in Russian) | DOI | MR | Zbl
[7] Bartle G., A Modern Theory of Integration, AMS, Providence, 2001, 458 pp. | MR | Zbl
[8] Gordon A., The Integrals of Lebesgue, Denjoy, Perron, and Henstock, AMS, Providence, 1994, 396 pp. | MR | Zbl