@article{ISU_2021_21_1_a9,
author = {A. A. Nazarov and S. V. Paul and O. D. Lizyura},
title = {Heavy outgoing call asymptotics for $\mathrm{MMPP|M|1}$ retrial queue with~two way communication and multiple types of outgoing calls},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {111--124},
year = {2021},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a9/}
}
TY - JOUR
AU - A. A. Nazarov
AU - S. V. Paul
AU - O. D. Lizyura
TI - Heavy outgoing call asymptotics for $\mathrm{MMPP|M|1}$ retrial queue with two way communication and multiple types of outgoing calls
JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY - 2021
SP - 111
EP - 124
VL - 21
IS - 1
UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a9/
LA - ru
ID - ISU_2021_21_1_a9
ER -
%0 Journal Article
%A A. A. Nazarov
%A S. V. Paul
%A O. D. Lizyura
%T Heavy outgoing call asymptotics for $\mathrm{MMPP|M|1}$ retrial queue with two way communication and multiple types of outgoing calls
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2021
%P 111-124
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a9/
%G ru
%F ISU_2021_21_1_a9
A. A. Nazarov; S. V. Paul; O. D. Lizyura. Heavy outgoing call asymptotics for $\mathrm{MMPP|M|1}$ retrial queue with two way communication and multiple types of outgoing calls. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 1, pp. 111-124. http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a9/
[1] Artalejo J. R., Gómez-Corral A., Retrial Queueing Systems, Springer, Berlin, 2008, 320 pp.
[2] Falin G., Templeton J., Retrial Queues, CRC Press, London, 1997, 320 pp.
[3] Bhulai S., Koole G., “A queueing model for call blending in call centers”, IEEE Transactions on Automatic Control, 48:8 (2003), 1434–1438 | DOI
[4] Aguir S., Karaesmen F., Ak{ş}in Z., Chauvet F., “The impact of retrials on call center performance”, OR Spectrum, 26:3 (2004), 353–376 | DOI
[5] Morozov E., Phung-Duc T., “Regenerative Analysis of Two-Way Communication Orbit-Queue with General Service Time”, Queueing Theory and Network Applications, QTNA 2018, Lecture Notes in Computer Science, 10932, eds. Y. Takahashi, T. Phung-Duc, S. Wittevrongel, W. Yue, Springer, Cham, 2018 | DOI
[6] Sakurai H., Phung-Duc T., “Scaling limits for single server retrial queues with two-way communication”, Annals of Operations Research, 2016, no. 247, 229–256 | DOI
[7] Dragieva V., Phung-Duc T., “Two-Way Communication M/M/1/1 Queue with Server-Orbit Interaction and Feedback of Outgoing Retrial Calls”, Information Technologies and Mathematical Modelling. Queueing Theory and Applications, ITMM 2017, Communications in Computer and Information Science, 800, eds. A. Dudin, A. Nazarov, A. Kirpichnikov, Springer, Cham, 2017 | DOI
[8] Sakurai H., Phung-Duc T., “Two-way communication retrial queues with multiple types of outgoing calls”, TOP, 23 (2015), 466–492 | DOI
[9] Nazarov A. A., Paul S. V., Gudkova I., “Asymptotic analysis of Markovian retrial queue with two-way communication under low rate of retrials condition”, Proceedings 31st European Conference on Modelling and Simulation (Netherlands, 2017), 678–693
[10] Nazarov A. A., Phung-Duc T., Paul S. V., “Heavy outgoing call asymptotics for MMPP/M/1/1 retrial queue with two-way communication”, Information Technologies and Mathematical Modelling. Queueing Theory and Applications, ITMM 2017, Communications in Computer and Information Science, 800, eds. A. Dudin, A. Nazarov, A. Kirpichnikov, Springer, Cham, 2017 | DOI