Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2021_21_1_a0, author = {I. A. Vysotskaya and I. I. Strukova}, title = {The research of some classes of almost periodic at infinity functions}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {4--14}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a0/} }
TY - JOUR AU - I. A. Vysotskaya AU - I. I. Strukova TI - The research of some classes of almost periodic at infinity functions JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2021 SP - 4 EP - 14 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a0/ LA - ru ID - ISU_2021_21_1_a0 ER -
%0 Journal Article %A I. A. Vysotskaya %A I. I. Strukova %T The research of some classes of almost periodic at infinity functions %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2021 %P 4-14 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a0/ %G ru %F ISU_2021_21_1_a0
I. A. Vysotskaya; I. I. Strukova. The research of some classes of almost periodic at infinity functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 21 (2021) no. 1, pp. 4-14. http://geodesic.mathdoc.fr/item/ISU_2021_21_1_a0/
[1] Gelfand I. M., Raikov D. A., Shilov G. E., “Commutative normed rings”, Uspehi Matem. Nauk (N. S.), 1:2 (12) (1946), 48–146 (in Russian)
[2] Baskakov A. G., Strukova I. I., Trishina I. A., “Solutions Almost Periodic at Infinity to Differential Equations With Unbounded Operator Coefficients”, Siberian Mathematical Journal, 59:2 (2018), 231–242 | DOI | DOI
[3] Trishina I. A., “Almost Periodic at Infinity Functions Relative to the Subspace of Functions Integrally Decrease at Infinity”, Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, 17:4 (2017), 402–418 (in Russian) | DOI | DOI
[4] Strukova I. I., “On Wiener's Theorem for functions periodic at infinity”, Siberian Mathematical Journal, 57:1 (2016), 145–154 | DOI | DOI
[5] Baskakov A., Strukova I., “Harmonic analysis of functions periodic at infinity”, Eurasian Mathematical Journal, 7:4 (2016), 9–29
[6] Baskakov A. G., “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russian Mathematical Surveys, 68:1 (2013), 69–116 | DOI | DOI
[7] Baskakov A. G., “Harmonic and spectral analysis of power bounded operators and bounded semigroups of operators on Banach spaces”, Mathematical Notes, 97:2 (2015), 164–178 | DOI | DOI
[8] Baskakov A. G., Kaluzhina N. S. Beurling's theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations, Mathematical Notes, 92:5 (2012), 587–605 | DOI | DOI
[9] Strukova I. I., “About harmonic analysis of periodic at infinity functions”, Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, 14:1 (2014), 28–38 (in Russian) | DOI
[10] Trishina I. A., “Functions slowly varying at infinity”, Proceeding of Voronezh State University. Series: Physics. Mathematics, 4 (2017), 134–144 (in Russian)
[11] Baskakov A. G., Krishtal I. A., “Harmonic analysis of causal operators and their spectral properties”, Izvestiya: Mathematics, 69:3 (2005), 439–486 | DOI | DOI
[12] Baskakov A. G., “Representation theory for Banach algebras, Abelian groups, and semigroups in the spectral analysis of linear operators”, Journal of Mathematical Sciences, 137:4 (2006), 4885–5036 | DOI
[13] Baskakov A. G., Krishtal I. A., “Spectral analysis of abstract parabolic operators in homogeneous function spaces”, Mediterranean Journal of Mathematics, 13:5 (2016), 2443–2462 | DOI