Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_3_a9, author = {E. P. Polin and S. P. Moiseeva and A. N. Moiseev}, title = {Heterogeneous queueing system $\mathrm{MR(S)/M(S)/}\infty$ with service parameters depending on the state of the underlying {Markov} chain}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {388--399}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a9/} }
TY - JOUR AU - E. P. Polin AU - S. P. Moiseeva AU - A. N. Moiseev TI - Heterogeneous queueing system $\mathrm{MR(S)/M(S)/}\infty$ with service parameters depending on the state of the underlying Markov chain JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 388 EP - 399 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a9/ LA - ru ID - ISU_2020_20_3_a9 ER -
%0 Journal Article %A E. P. Polin %A S. P. Moiseeva %A A. N. Moiseev %T Heterogeneous queueing system $\mathrm{MR(S)/M(S)/}\infty$ with service parameters depending on the state of the underlying Markov chain %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 388-399 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a9/ %G ru %F ISU_2020_20_3_a9
E. P. Polin; S. P. Moiseeva; A. N. Moiseev. Heterogeneous queueing system $\mathrm{MR(S)/M(S)/}\infty$ with service parameters depending on the state of the underlying Markov chain. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 3, pp. 388-399. http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a9/
[1] I. R. Garayshina, A. A. Nazarov, “Investigation of Russian Federation retirement fund insurance capital modification process mathematical model”, Tomsk State University Journal, 2003, no. 280, 109–111 (in Russian)
[2] N. P. Fokina, I. E. Tananko, “A Method of Routing Control in Queueing Networks with Changing Topology”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 13:2-2 (2013), 82–88 (in Russian) | DOI | Zbl
[3] D. D. Akhmedova, A. F. Terpugov, “Mathematical model of an insurance company taking into account advertising costs”, Izvestiya vuzov. Fizika, 44:1 (2001), 25–29 (in Russian) | MR
[4] A. K. Erlang, “The theory of probability and telephone conversations”, Nyt Tidsskrift for Matematik. B, 20 (1909), 33–39 | Zbl
[5] E. V. Pankratova, “Investigation of the queuing system GI/GI/$\infty$ with two types of arrivals”, Information Technology and Mathematical Modeling, ITMM-2015, Materials of the XIV Int. conf. named after A. F. Terpugov, v. 1, Izd-vo Tomskogo universiteta, Tomsk, 2015, 152–157 (in Russian)
[6] E. V. Pankratova, “Investigation of the queuing system MAP|M|$\infty$ with heterogeneous service using the asymptotic analysis method under the condition of extremely rare changes in the state of the incoming stream”, Distributed computer and communication networks: control, computation, communications (DCCN-2015), Institut problem upravleniya RAS, M., 2015, 585–592 (in Russian)
[7] E. V. Pankratova, S. P. Moiseeva, “Queueing System GI/GI/$\infty$ with $n$ Types of Customers”, Communications in Computer and Information Science, 564, Springer, Switzerland, 2015, 216–225 | DOI
[8] S. P. Moiseeva, E. V. Pankratova, E. G. Ubonova, “Queuing system with renewal arrival process and two types of customers”, Tomsk State University Journal of Control and Computer Science, 2016, no. 2(35), 46–53 (in Russian) | DOI
[9] S. P. Moiseeva, I. A. Sinyakova, “The method of moments for the study of the mathematical model of parallel servicing multiple claims of the Markov renewal process”, Bulletin of the Tomsk Polytechnic University, 321:5 (2012), 24–28 (in Russian)