Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_3_a6, author = {T. V. Bykova and E. D. Grushenkova and V. S. Popov and A. A. Popova}, title = {Hydroelastic response of a sandwich plate possessing a compressible core and interacting with a rigid die via a viscous fluid layer}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {351--366}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a6/} }
TY - JOUR AU - T. V. Bykova AU - E. D. Grushenkova AU - V. S. Popov AU - A. A. Popova TI - Hydroelastic response of a sandwich plate possessing a compressible core and interacting with a rigid die via a viscous fluid layer JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 351 EP - 366 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a6/ LA - ru ID - ISU_2020_20_3_a6 ER -
%0 Journal Article %A T. V. Bykova %A E. D. Grushenkova %A V. S. Popov %A A. A. Popova %T Hydroelastic response of a sandwich plate possessing a compressible core and interacting with a rigid die via a viscous fluid layer %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 351-366 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a6/ %G ru %F ISU_2020_20_3_a6
T. V. Bykova; E. D. Grushenkova; V. S. Popov; A. A. Popova. Hydroelastic response of a sandwich plate possessing a compressible core and interacting with a rigid die via a viscous fluid layer. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 3, pp. 351-366. http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a6/
[1] H. Lamb, “On the vibrations of an elastic plate in contact with water”, Proc. Roy. Soc. A, 98 (1921), 205–216 | DOI
[2] M. Amabili, M. K. Kwak, “Free vibrations of circular plates coupled with liquids: Revising the Lamb problem”, J. Fluids Struct., 10:7 (1996), 743–761 | DOI
[3] M. Amabili, “Vibrations of Circular Plates Resting on a Sloshing Liquid: Solution of the Fully Coupled Problem”, J. Sound Vib., 245:2 (2001), 261–283 | DOI
[4] E. Askari, K. H. Jeong, M. Amabili, “Hydroelastic vibration of circular plates immersed in a liquid-filled container with free surface”, J. Sound Vib., 332:12 (2013), 3064–3085 | DOI
[5] V. V. Alekseev, D. A. Indeitsev, Yu. A. Mochalova, “Vibration of a flexible plate in contact with the free surface of a heavy liquid”, Tech. Phys., 47:5 (2002), 529–534 | DOI
[6] A. V. Ankilov, P. A. Vel'misov, Iu. A. Tamarova, “Research on dynamics and stability of an elastic element of the flow channel”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 18:1 (2016), 94–107 (in Russian) | MR | Zbl
[7] S. A. Bochkarev, S. V. Lekomtsev, V. P. Matveenko, “Hydroelastic stability of a rectangular plate interacting with a layer of ideal flowing fluid”, Fluid Dynamics, 51:6 (2016), 821–833 | DOI | DOI | MR | Zbl
[8] K. V. Avramov, E. A. Strel'nikova, “Chaotic oscillations of plates interacting on both sides with a fluid flow”, Int. Appl. Mech., 50:3 (2014), 303–309 | DOI | MR | Zbl
[9] M. R. Haddara, S. Cao, “A Study of the Dynamic Response of Submerged Rectangular Flat Plates”, Marine Struct., 9:10 (1996), 913–933 | DOI
[10] C. J. Chapman, S. V. Sorokin, “The forced vibration of an elastic plate under significant fluid loading”, J. Sound Vib., 281:3 (2005), 719–741 | DOI
[11] A. Ergin, B. Ugurlu, “Linear vibration analysis of cantilever plates partially submerged in fluid”, J. Fluids Struct., 17:7 (2003), 927–939 | DOI
[12] Y. Kozlovsky, “Vibration of plates in contact with viscous fluid: Extension of Lamb's model”, J. Sound Vib., 326:1–2 (2009), 332–339 | DOI
[13] T. O-nsay, “Effects of layer thickness on the vibration response of a plate-fluid layer system”, J. Sound Vib., 163:2 (1993), 231–259 | DOI
[14] R. V. Ageev, T. V. Bykova, J. N. Kondratova, “Mathematical Modeling of Interaction Between Layer of Viscous Liquid and Elastic Walls of Channel, Which Was Installed on Vibration Foundation”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 11:2 (2011), 48–54 (in Russian) | DOI
[15] C. T. Faria, D. J. Inman, “Modeling energy transport in a cantilevered Euler-Bernoulli beam actively vibrating in Newtonian fluid”, Mech. Syst. Signal Processing, 45:2 (2014), 317–329 | DOI
[16] L. I. Mogilevich, V. S. Popov, “Investigation of the interaction between a viscous incompressible fluid layer and walls of a channel formed by coaxial vibrating discs”, Fluid Dyn., 46:3 (2011), 375–388 | DOI | MR | Zbl
[17] V. V. Alekseev, D. A. Indeitsev, Yu. A. Mochalova, “Resonant oscillations of an elastic membrane on the bottom of a tank containing a heavy liquid”, Tech. Phys., 44:8 (1999), 903–907 | DOI
[18] D. V. Kondratov, L. I. Mogilevich, V. S. Popov, A. A. Popova, “Hydroelastic Oscillations of a Circular Plate, Resting on Winkler Foundation”, J. Phys.: Conf. Ser., 944 (2018), 012057 | DOI
[19] L. I. Mogilevich, V. S. Popov, A. A. Popova, A. V. Christoforova, “Mathematical Modeling of Hydroelastic Oscillations of the Stamp and the Plate, Resting on Pasternak Foundation”, J. Phys.: Conf. Ser., 944 (2018), 012081 | DOI
[20] A. G. Gorshkov, E. I. Starovoitov, A. V. Yarovaya, Mechanics of layered viscoelastoplastic structural elements, Fizmatlit, M., 2005, 576 pp. (in Russian)
[21] E. I. Starovoitov, D. V. Leonenko, “Deformation of a three-layer elastoplastic beam on an elastic foundation”, Mech. Solids, 46:2 (2011), 291–298 | DOI
[22] D. V. Leonenko, E. I. Starovoitov, “Thermal impact on a circular sandwich plate on an elastic foundation”, Mech. Solids, 47:1 (2012), 111–118 | DOI | MR
[23] E. I. Starovoitov, D. V. Leonenko, “Bending of a Place Sandwich Beam by Local Loads in the Temperature Field”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 18:1 (2018), 69–83 | DOI | MR
[24] M. Pradhan, P. R. Dash, P. K. Pradhan, “Static and dynamic stability analysis of an asymmetric sandwich beam resting on a variable Pasternak foundation subjected to thermal gradient”, Meccanica, 51:3 (2016), 725–739 | DOI | MR | Zbl
[25] E. I. Starovoitov, D. V. Leonenko, “Variable Bending of a Three-layer Rod with a Compressed Filler in the Neutron Flux”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 17:2 (2017), 196–208 (in Russian) | DOI | MR
[26] M. R. Kramer, Z. Liu, Y. L. Young, “Free vibration of cantilevered composite plates in air and in water”, Composite Structures, 95 (2013), 254–263 | DOI
[27] R. V. Ageev, L. I. Mogilevich, V. S. Popov, “Vibrations of the walls of a slot channel with a viscous fluid formed by three-layer and solid disks”, Journal of Machinery Manufacture and Reliability, 43:1 (2014), 1–8 | DOI | Zbl
[28] V. S. Popov, L. I. Mogilevich, E. D. Grushenkova, “Hydroelastic response of three-layered plate interacting with pulsating viscous liquid layer”, Proceedings of the 4th International Conference on Industrial Engineering, ICIE 2018, Lecture Notes in Mechanical Engineering, eds. Radionov A., Kravchenko O., Guzeev V., Rozhdestvenskiy Y., Springer, Cham, 2019, 459–467 | DOI
[29] A. Chernenko, D. Kondratov, L. Mogilevich, V. Popov, E. Popova, “Mathematical modeling of hydroelastic interaction between stamp and three-layered beam resting on Winkler foundation”, Studies in Systems, Decision and Control, 199 (2019), 671–681 | DOI
[30] L. G. Loitsianskii, Mechanics of Liquids and Gases, Drofa, M., 2003, 840 pp. (in Russian)
[31] Ia. G. Panovko, I. I. Gubanova, Stability and Oscillations of Elastic Systems, Nauka, M., 1987, 352 pp. (in Russian) | MR
[32] M. Van Dyke, Perturbation methods in fluid mechanics, Parabolic Press, Stanford, 1975, 271 pp. | MR | Zbl