Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_3_a2, author = {R. B. Salimov and E. N. Khasanova}, title = {New method for investigating the {Hilbert} boundary value problem with an infinite logarithmic order index}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {297--309}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a2/} }
TY - JOUR AU - R. B. Salimov AU - E. N. Khasanova TI - New method for investigating the Hilbert boundary value problem with an infinite logarithmic order index JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 297 EP - 309 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a2/ LA - ru ID - ISU_2020_20_3_a2 ER -
%0 Journal Article %A R. B. Salimov %A E. N. Khasanova %T New method for investigating the Hilbert boundary value problem with an infinite logarithmic order index %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 297-309 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a2/ %G ru %F ISU_2020_20_3_a2
R. B. Salimov; E. N. Khasanova. New method for investigating the Hilbert boundary value problem with an infinite logarithmic order index. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 3, pp. 297-309. http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a2/
[1] I. E. Sandrygailo, “On Hilbert's boundary-value problem with infinite index for the half-plane”, Izv. Akad. nauk Belorus. SSR. Ser. fiz. mat. nauk, 1974, no. 6, 16–23 (in Russian) | MR
[2] P. Alekna, “The Hilbert boundary-value problem with infinite index of logarithmic orden in the half-plane”, Lith. Math. J., 17 (1978), 1–6 | DOI | MR | Zbl
[3] N. I. Muskheshvili, Singular Integral Equations, Nauka, M., 1968, 511 pp. (in Russian) | MR
[4] N. V. Govorov, Riemann Boundary Problem with Infinite Index, Nauka, M., 1986, 289 pp. (in Russian)
[5] R. B. Salimov, P. L. Shabalin, “To the solution of the Hilbert problem with infinite index”, Math. Notes, 73:5 (2003), 680–689 | DOI | DOI | MR | Zbl
[6] F. D. Gakhov, Boundary-Value Problems, Nauka, M., 1977, 640 pp. (in Russian)
[7] E. N. Karabasheva, “On solvability of homogeneous Hilbert problem with countable set of points discontinuities and of a different order two-side curling at infinity”, News of the KSUAE, 2014, no. 1 (27), 242–252 (in Russian)
[8] P. G. Yurov, “The homogeneous Riemann boundary value problem with an infinite index of logarithmic type”, Izv. Vyssh. Uchebn. Zaved. Mat., 1966, no. 2, 158–163 (in Russian)
[9] R. B. Salimov, E. N. Khasanova, “The Solution of the Homogeneous Boundary Value Problem of Riemann with Infinite Index of Logarithmic Order on the Beam by a New Method”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 17:2 (2017), 160–171 (in Russian) | DOI | MR | Zbl
[10] A. I. Markushevich, The theory of analytic functions, in 2 vols., v. 1, Nauka, M., 1968, 486 pp. (in Russian) | MR
[11] A. I. Markushevich, The theory of analytic functions, in 2 vols., v. 2, Nauka, M., 1968, 624 pp. (in Russian) | MR
[12] B. Ya. Levin, Distribution of Zeros of Entire Functions, Gostechizdat, M., 1956, 632 pp. (in Russian)