On a total resource amounts at the system with parallel service and MMPP arrivals
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 3, pp. 400-410.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a resource system with an unlimited resources and servers number, with parallel customers servicing, arriving at the system according to the MMPP. Using a combination of multidimensional dynamic screening methods and asymptotic analysis, it is proved that the joint asymptotic probability distribution of the total resource amounts converges to a bi-dimensional Gaussian distribution under conditions of increasing intensity of MMPP. The parameters of the asymptotic probability distribution are found. A numerical analysis of the approximation accuracy is carried out.
@article{ISU_2020_20_3_a10,
     author = {E. N. Chernishova and E. Yu. Lisovskaya},
     title = {On a total resource amounts at the system with parallel service and {MMPP} arrivals},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {400--410},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a10/}
}
TY  - JOUR
AU  - E. N. Chernishova
AU  - E. Yu. Lisovskaya
TI  - On a total resource amounts at the system with parallel service and MMPP arrivals
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2020
SP  - 400
EP  - 410
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a10/
LA  - ru
ID  - ISU_2020_20_3_a10
ER  - 
%0 Journal Article
%A E. N. Chernishova
%A E. Yu. Lisovskaya
%T On a total resource amounts at the system with parallel service and MMPP arrivals
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2020
%P 400-410
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a10/
%G ru
%F ISU_2020_20_3_a10
E. N. Chernishova; E. Yu. Lisovskaya. On a total resource amounts at the system with parallel service and MMPP arrivals. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 3, pp. 400-410. http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a10/

[1] Yu. V. Gajdamaka, E. R. Zaripova, Yu. N. Orlov, “Analysis of the impact the batch size distribution on parameters of the SIP-server queueing model with batch arrivals”, KIAM Preprint, 2015, 027, 16 pp. (in Russian) (accessed 07 May 2019)

[2] D. V. Efrosinin, Methods of analysis of controlled dynamic systems, Diss. Dr. Sci. (Phis. and math.), M., 2013, 332 pp. (in Russian) | Zbl

[3] A. Galileyskaya, “On the Total Amount of the Occupied Resources in the Multi-Resource QS with Renewal Arrival Process”, Information Technology and Mathematical Modeling, ITMM-2019, Materials of the XVIII Int. conf. named after A. F. Terpugov, v. 2, Izd-vo NTL, Tomsk, 2019, 80–85

[4] E. Yu. Lisovskaya, A. N. Moiseev, S. P. Moiseeva, M. Pagano, “Modeling of processing of physics experimental data in the form of non-Markovian multi-resource queuing system”, Izvestiya vuzov. Fizika, 61:12 (732) (2018), 39–46 (in Russian)

[5] A. Mandelbaum, S. Zeltyn, “The impact of customers' patience on delay and abandonment: Some empirically-driven experiments with the $M/M/n + G$ queue”, OR Spectrum, 26 (2004), 377–411 | DOI | MR | Zbl

[6] M. F. Neuts, “Models based on the Markovian arrival process”, IEICE Trans. Comm., E-75B:12 (1992), 1255–1265

[7] D. M. Lucantoni, “New results on single server queue with a batch Markovian arrival process”, Stoch. Models, 7:1 (1991), 1–46 | DOI | MR | Zbl

[8] E. Yu. Lisovskaya, S. P. Moiseeva, M. Pagano, Simulation model of an infinitely linear system for servicing requirements of a random volume with an input flow MMP, copyright holder National Research Tomsk State University (RU). No. 2017612202; declared 17.03.2017; register in the Register of computer programs 12.05.2017 (in Russian)