Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_3_a10, author = {E. N. Chernishova and E. Yu. Lisovskaya}, title = {On a total resource amounts at the system with parallel service and {MMPP} arrivals}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {400--410}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a10/} }
TY - JOUR AU - E. N. Chernishova AU - E. Yu. Lisovskaya TI - On a total resource amounts at the system with parallel service and MMPP arrivals JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 400 EP - 410 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a10/ LA - ru ID - ISU_2020_20_3_a10 ER -
%0 Journal Article %A E. N. Chernishova %A E. Yu. Lisovskaya %T On a total resource amounts at the system with parallel service and MMPP arrivals %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 400-410 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a10/ %G ru %F ISU_2020_20_3_a10
E. N. Chernishova; E. Yu. Lisovskaya. On a total resource amounts at the system with parallel service and MMPP arrivals. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 3, pp. 400-410. http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a10/
[1] Yu. V. Gajdamaka, E. R. Zaripova, Yu. N. Orlov, “Analysis of the impact the batch size distribution on parameters of the SIP-server queueing model with batch arrivals”, KIAM Preprint, 2015, 027, 16 pp. (in Russian) (accessed 07 May 2019)
[2] D. V. Efrosinin, Methods of analysis of controlled dynamic systems, Diss. Dr. Sci. (Phis. and math.), M., 2013, 332 pp. (in Russian) | Zbl
[3] A. Galileyskaya, “On the Total Amount of the Occupied Resources in the Multi-Resource QS with Renewal Arrival Process”, Information Technology and Mathematical Modeling, ITMM-2019, Materials of the XVIII Int. conf. named after A. F. Terpugov, v. 2, Izd-vo NTL, Tomsk, 2019, 80–85
[4] E. Yu. Lisovskaya, A. N. Moiseev, S. P. Moiseeva, M. Pagano, “Modeling of processing of physics experimental data in the form of non-Markovian multi-resource queuing system”, Izvestiya vuzov. Fizika, 61:12 (732) (2018), 39–46 (in Russian)
[5] A. Mandelbaum, S. Zeltyn, “The impact of customers' patience on delay and abandonment: Some empirically-driven experiments with the $M/M/n + G$ queue”, OR Spectrum, 26 (2004), 377–411 | DOI | MR | Zbl
[6] M. F. Neuts, “Models based on the Markovian arrival process”, IEICE Trans. Comm., E-75B:12 (1992), 1255–1265
[7] D. M. Lucantoni, “New results on single server queue with a batch Markovian arrival process”, Stoch. Models, 7:1 (1991), 1–46 | DOI | MR | Zbl
[8] E. Yu. Lisovskaya, S. P. Moiseeva, M. Pagano, Simulation model of an infinitely linear system for servicing requirements of a random volume with an input flow MMP, copyright holder National Research Tomsk State University (RU). No. 2017612202; declared 17.03.2017; register in the Register of computer programs 12.05.2017 (in Russian)