Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_2_a5, author = {N. A. Zverev and A. V. Zemskov and D. V. Tarlakovskii}, title = {Unsteady electromagnetic elasticity of piezoelectrics considering diffusion}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {193--204}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a5/} }
TY - JOUR AU - N. A. Zverev AU - A. V. Zemskov AU - D. V. Tarlakovskii TI - Unsteady electromagnetic elasticity of piezoelectrics considering diffusion JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 193 EP - 204 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a5/ LA - ru ID - ISU_2020_20_2_a5 ER -
%0 Journal Article %A N. A. Zverev %A A. V. Zemskov %A D. V. Tarlakovskii %T Unsteady electromagnetic elasticity of piezoelectrics considering diffusion %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 193-204 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a5/ %G ru %F ISU_2020_20_2_a5
N. A. Zverev; A. V. Zemskov; D. V. Tarlakovskii. Unsteady electromagnetic elasticity of piezoelectrics considering diffusion. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 2, pp. 193-204. http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a5/
[1] Afram A. Y., Khader S. E., “2D Problem for a Half-Space under the Theory of Fractional Thermoelastic Diffusion”, American Journal of Scientific and Industrial Research, 6:3 (2014), 47–57 | DOI
[2] Atwa S. Y., Egypt Z., “Generalized Thermoelastic Diffusion with Effect of Fractional Parameter on Plane Waves Temperature-Dependent Elastic Medium”, Journal of Materials and Chemical Engineering, 1:2 (2013), 55–74 | MR
[3] Belova I. V., Murch G. E., “Thermal and diffusion-induced stresses in crystalline solids”, Journal of Applied Physics, 77:1 (1995), 127–134 | DOI
[4] Choudhary S., Deswal S., “Mechanical loads on a generalized thermoelastic medium with diffusion”, Meccanica, 45 (2010), 401–413 | DOI | MR | Zbl
[5] Elhagary M. A., “Generalized thermoelastic diffusion problem for an infinitely long hollow cylinder for short times”, Acta Mech., 218 (2011), 205–215 | DOI | Zbl
[6] El-Sayed A. M., “A two-dimensional generalized thermoelastic diffusion problem for a half-space”, Mathematics and Mechanics of Solids, 21:9 (2016), 1045–1060 | DOI | MR | Zbl
[7] Knyazeva A. G., “Model of medium with diffusion and internal surfaces and some applied problems”, Mater. Phys. Mech., 7:1 (2004), 29–36
[8] Kumar R., Chawla V., “Green's Functions in Orthotropic Thermoelastic Diffusion Media”, Engineering Analysis with Boundary Elements, 36:8 (2012), 1272–1277 | DOI | MR | Zbl
[9] Olesiak Z. S., Pyryev Yu. A., “A coupled quasi-stationary problem of thermodiffusion for an elastic cylinder”, International Journal of Engineering Science, 33:6 (1995), 773–780 | DOI | MR | Zbl
[10] Pidstryhach Ya. S., “Differential equations of the problem of thermodiffusion in a solid deformable isotropic body”, Dopov. Akad. Nauk Ukr. RSR, 1961, no. 2, 169–172 (in Ukrainian)
[11] Sherief H. H., El-Maghraby N. M., “A Thick Plate Problem in the Theory of Generalized Thermoelastic Diffusion”, Int. J. Thermophys., 30 (2009), 2044–2057 | DOI
[12] Aouadi M., “Variable electrical and thermal conductivity in the theory of generalized thermoelastic diffusion”, Zeitschrift fur Angewandte Mathematik und Physik, 57:2 (2006), 350–366 | DOI | MR | Zbl
[13] Deswal S., Kalkal K., “A two-dimensional generalized electro-magneto-thermoviscoelastic problem for a half-space with diffusion”, International Journal of Thermal Sciences, 50:5 (2011), 749–759 | DOI
[14] Tarlakovskii D. V., Vestyak V. A., Zemskov A. V., “Dynamic Processes in Thermo-Electro-Magneto-Elastic and Thermo-Elasto-Diffusive Media”, Encyclopedia of Thermal Stresses, 6, ed. Hetnarski R. B., Springer, Dordrecht–Heidelberg–N. Y.–London, 2014, 1064–1071 | DOI
[15] Zhang J., Li Y., “A Two-Dimensional Generalized Electromagnetothermoelastic Diffusion Problem for a Rotating Half-Space”, Mathematical Problems in Engineering, 2014 (2014), 964218, 12 pp. | DOI | MR
[16] Chu J. L., Lee S., “Diffusion-induced stresses in a long bar of square cross section”, J. Appl. Phys., 73:7 (1993), 3211–3219 | DOI
[17] Freidin A. B., Korolev I. K., Aleshchenko S. P., Vilchevskaya E. N., “Chemical affinity tensor and chemical reaction front propagation: theory and FE-simulations”, Int. J. Fract., 202:2 (2016), 245–259 | DOI | MR
[18] Hwang C. C., Chen K. M., Hsieh J. Y., “Diffusion-induced stresses in a long bar under an electric field”, J. Phys. D : Appl. Phys., 27:10 (1994), 2155–2162 | DOI
[19] Indeitsev D. A., Semenov B. N., Sterlin M. D., “The Phenomenon of Localization of Diffusion Process in a Dynamically Deformed Solid”, Doklady Physics, 57:4 (2012), 171–173 | DOI
[20] Zemskov A. V., Tarlakovskii D. V., “Statement of the one-dimensional problem of thermoelectromagnetoelastic diffusion”, Dynamic and Technological Problems of a Mechanics of Constructions and Continuous Mediums, Proc. XXIV Int. Symposium Dedicated to A. G. Gorshkov, v. 2, TRP, M., 2018, 157–163 (in Russian)
[21] Davydov S. A., Zemskov A. V., Tarlakovskiy D. V., “Surface Green's function in non-stationary problems of thermomechanical diffusion”, Journal Problems of Strength and Plasticity, 79:1 (2017), 38–47 (in Russian) | DOI
[22] Ditkin V. A., Prudnikov A. P., Handbook of operational calculus, Vysshaya shkola, M., 1965, 466 pp. (in Russian) | MR
[23] Zverev N. A, Zemskov A. V., Tarlakovskii D. V., “One-dimensional problem of piezoelectric electromagnetic diffusion for a layer”, Journal of Physics : Conference Series, 1129 (2018), 012040 | DOI
[24] Bardzokas D. I., Zobnin A. I., Senik N. A., Fil'shtinskii M. L., Mathematical modeling in problems of mechanics of related fields, in 2 vols, v. 1, Introduction to the theory of piezoelectricity, KomKniga, M., 2005, 312 pp. (in Russian)