Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_2_a2, author = {M. M. Kobilzoda and A. N. Naimov}, title = {On the positive solutions of a model system of nonlinear ordinary differential equations}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {161--171}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a2/} }
TY - JOUR AU - M. M. Kobilzoda AU - A. N. Naimov TI - On the positive solutions of a model system of nonlinear ordinary differential equations JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 161 EP - 171 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a2/ LA - ru ID - ISU_2020_20_2_a2 ER -
%0 Journal Article %A M. M. Kobilzoda %A A. N. Naimov %T On the positive solutions of a model system of nonlinear ordinary differential equations %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 161-171 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a2/ %G ru %F ISU_2020_20_2_a2
M. M. Kobilzoda; A. N. Naimov. On the positive solutions of a model system of nonlinear ordinary differential equations. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 2, pp. 161-171. http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a2/
[1] Gorsky A. A., Lokshin B. Y., Rozov N. Kh., “The regime intensified in one system of nonlinear equations”, Differential Equations, 35:11 (1999), 1571–1581 (in Russian)
[2] Gorsky A. A., Lokshin B. Y., “A mathematical model of goods production and sale for production supervision and planning”, Fundamentalnaya i Prikladnaya Matematika, 8:1 (2002), 39–45 (in Russian) | MR
[3] Mukhamadiev E., Naimov A. N., Sobirov M. K., “Research positive solutions of dynamic model of production and sale goods”, Modern methods of applied mathematics, control theory and computer technology, Proceedings of X Int. Conf. (“PMTUKT-2017”), Nauchnaia kniga, Voronezh, 2017, 268–271 (in Russian)
[4] Kobilzoda M. M., Naimov A. N., “On positive and periodic solutions of one class of systems of nonlinear ordinary differential equations on a plane”, Proccedings of Voronezh State University. Ser. Physics. Mathematics, 2019, no. 1, 117–127 (in Russian)
[5] Pliss V. A., Nonlocal problems of the theory of oscillations, Acad. Press, New York–London, 1966, 306 pp. | MR | Zbl
[6] Krasnosel'skii M. A., Zabreiko P. P., Geometrical Methods of Nonlinear Analysis, Springer Verlag, Berlin–Heidelberg–New York–Tokyo, 1984, 409 pp. | MR | MR | Zbl
[7] Mukhamadiev E., “On the theory of bounded solutions of ordinary differential equations”, Differ. Uravn., 10:4 (1974), 635–646 (in Russian) | MR | Zbl
[8] Mukhamadiev E., “Research on the theory of periodic and bounded solutions of differential equations”, Mathematical Notes of the Academy of Sciences of the USSR, 30:3 (1981), 713–722 | DOI | MR | Zbl
[9] Hartman P., Ordinary Differential Equations, John Wiley and Sons, New York, 1964, 612 pp. | MR | Zbl