Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_2_a10, author = {V. M. Kocheganov}, title = {Markov chain states classification in a tandem model with a cyclic service algorithm with prolongation}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {257--265}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a10/} }
TY - JOUR AU - V. M. Kocheganov TI - Markov chain states classification in a tandem model with a cyclic service algorithm with prolongation JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 257 EP - 265 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a10/ LA - ru ID - ISU_2020_20_2_a10 ER -
%0 Journal Article %A V. M. Kocheganov %T Markov chain states classification in a tandem model with a cyclic service algorithm with prolongation %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 257-265 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a10/ %G ru %F ISU_2020_20_2_a10
V. M. Kocheganov. Markov chain states classification in a tandem model with a cyclic service algorithm with prolongation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 2, pp. 257-265. http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a10/
[1] Haight F. A., Mathematical Theories of Traffic Flow, Academic, N. Y., 1963, 241 pp. | MR | Zbl
[2] Inose H., Hamada T., Road Traffic Control, Univ. of Tokyo Press, Tokyo, 1975, 331 pp. | Zbl
[3] Drew D. R., Traffic Stream Theory and Control, McGraw-Hill, N. Y., 1968, 467 pp. | MR
[4] Fedotkin M. A., “On a class of stable algorithms for control of conflicting flows or arriving airplanes”, Problems of Control and Information Theory, 6:1 (1977), 17–27 | MR | Zbl
[5] Fedotkin M. A., “Construction of a model and investigation of nonlinear algorithms for control of intense conflict flows in a system with variable structure of servicing demands. I”, Lithuanian mathematical journal, 7:1 (1977), 129–137 | DOI | MR
[6] Litvak N. V., Fedotkin M. A., “A probabilistic model for the adaptive control of conflict flows”, Automation and Remote Control, 61:5 (2000), 777–784 | MR | Zbl
[7] Proidakova E. V., Fedotkin M. A., “Control of output flows in the system with cyclic servicing and readjustments”, Automation and Remote Control, 69:6 (2008), 993–1002 | DOI | MR | Zbl
[8] Yamada K., Lam T. N., “Simulation analysis of two adjacent traffic signals”, Proceedings of the 17th Winter Simulation Conference, ACM, N. Y., 1985, 454–464 | DOI
[9] Kocheganov V. M., Zorine A. V., “Sufficient condition of low-priority queue stationary distribution existence in a tandem of queuing systems”, Bulletin of the Volga State Academy of Water Transport, 50 (2017), 47–55 (in Russian)
[10] Kocheganov V., Zorine A. V., “Sufficient condition for primary queues stationary distribution existence in a tandem of queuing systems”, Herald of Tver State University. Ser. Appl. Math., 2018, no. 2, 49–74 (in Russian) | DOI