Symmetrization in clean and nil-clean rings
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 2, pp. 154-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and investigate D-clean and D-nil-clean rings as well as some other closely related symmetric versions of cleanness and nil-cleanness. A comprehensive structural characterization is given for these symmetrically clean and symmetrically nil-clean rings in terms of Jacobson radical and its quotient. It is proved that strongly clean (resp., strongly nil-clean) rings are always D-clean (resp., D-nil-clean).Our results corroborate our recent findings published in Bull. Irkutsk State Univ., Math. (2019) and Turk. J. Math. (2019). We also show that weakly nil-clean rings defined as in Danchev-McGovern (J. Algebra, 2015) and Breaz – Danchev – Zhou (J. Algebra Appl., 2016) are actually weakly nil clean in the sense of Danchev-Šter (Taiwanese J. Math., 2015). This answers the question of the reviewer D. Khurana (Math. Review, 2017).
@article{ISU_2020_20_2_a1,
     author = {P. V. Danchev},
     title = {Symmetrization in clean and nil-clean rings},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {154--160},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a1/}
}
TY  - JOUR
AU  - P. V. Danchev
TI  - Symmetrization in clean and nil-clean rings
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2020
SP  - 154
EP  - 160
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a1/
LA  - en
ID  - ISU_2020_20_2_a1
ER  - 
%0 Journal Article
%A P. V. Danchev
%T Symmetrization in clean and nil-clean rings
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2020
%P 154-160
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a1/
%G en
%F ISU_2020_20_2_a1
P. V. Danchev. Symmetrization in clean and nil-clean rings. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 2, pp. 154-160. http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a1/

[1] Lam T. Y., A First Course in Noncommutative Rings, Graduate Texts in Math., 131, 2nd ed., Springer-Verlag, Berlin–Heidelberg–New York, 2001, 388 pp. | DOI | MR | Zbl

[2] Nicholson W. K., “Lifting idempotents and exchange rings”, Trans. Amer. Math. Soc., 229 (1977), 269–278 | DOI | MR | Zbl

[3] Diesl A. J., “Nil clean rings”, J. Algebra, 383 (2013), 197–211 | DOI | MR | Zbl

[4] Danchev P. V., McGovern W. Wm., “Commutative weakly nil clean unital rings”, J. Algebra, 425 (2015), 410–422 | DOI | MR | Zbl

[5] Danchev P. V., “Left-right cleanness and nil cleanness in unital rings”, The Bulletin of Irkutsk State University. Series Mathematics, 27 (2019), 28–35 | DOI | MR | Zbl

[6] Danchev P. V., “A generalization of $\pi$-regular rings”, Turk. J. Math., 43 (2019), 702–711 | DOI | MR | Zbl

[7] Danchev P. V., Lam T. Y., “Rings with unipotent units”, Publ. Math. Debrecen, 88 (2016), 449–466 | DOI | MR | Zbl

[8] Azumaya G., “Strongly $\pi$-regular rings”, J. Fac. Sci. Hokkaido Univ. (Ser. I, Math.), 13 (1954), 34–39 | DOI | MR

[9] Nicholson W. K., “Strongly clean rings and Fitting's lemma”, Commun. Algebra, 27 (1999), 3583–3592 | DOI | MR | Zbl

[10] Danchev P. V., “Generalizing nil clean rings”, Bull. Belg. Math. Soc. Simon Stevin, 25:1 (2018), 13–29 | DOI | MR

[11] Šter J., “Nil-clean quadratic elements”, J. Algebra Appl., 16:10 (2017), 1750197 | DOI | MR

[12] Breaz S., Danchev P., Zhou Y., “Rings in which every element is either a sum or a difference of a nilpotent and an idempotent”, J. Algebra Appl., 15:08 (2016), 1650148 | DOI | MR | Zbl

[13] Danchev P., Šter J., “Generalizing $\pi$-regular rings”, Taiwanese J. Math., 19:6 (2015), 1577–1592 | DOI | MR | Zbl

[14] Khurana D., Math. Review, 2017, 3528770

[15] Danchev P. V., “Weakly UU rings”, Tsukuba J. Math., 40:1 (2016), 101–118 | DOI | MR | Zbl

[16] Koşan M. T., Yildirim T., Zhou Y., “Rings with $x^n-x$ nilpotent”, J. Algebra Appl., 19 (2020) | DOI | MR | Zbl

[17] Hirano Y., Tominaga H., Yaqub A., “On rings in which every element is uniquely expressible as a sum of a nilpotent element and a certain potent element”, Math. J. Okayama Univ., 30 (1988), 33–40 | MR | Zbl