Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_1_a1, author = {M. Yu. Ignatiev}, title = {Asymptotics of solutions of some integral equations connected with differential systems with a singularity}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {17--28}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a1/} }
TY - JOUR AU - M. Yu. Ignatiev TI - Asymptotics of solutions of some integral equations connected with differential systems with a singularity JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 17 EP - 28 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a1/ LA - en ID - ISU_2020_20_1_a1 ER -
%0 Journal Article %A M. Yu. Ignatiev %T Asymptotics of solutions of some integral equations connected with differential systems with a singularity %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 17-28 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a1/ %G en %F ISU_2020_20_1_a1
M. Yu. Ignatiev. Asymptotics of solutions of some integral equations connected with differential systems with a singularity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 1, pp. 17-28. http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a1/
[1] Brunnhuber R., Kostenko A., Teschl G., “Singular Weyl – Titchmarsh – Kodaira theory for one-dimensional Dirac operators”, Monatshefte für Mathematik, 174 (2014), 515–547 | DOI
[2] Albeverio S., Hryniv R., Mykytyuk Ya., “Reconstruction of radial Dirac operators”, J. Math. Phys., 48:4 (2007), 043501, 14 pp. | DOI
[3] Albeverio S., Hryniv R., Mykytyuk Ya., “Reconstruction of radial Dirac and Schrödinger operators from two spectra”, J. Math. Anal. Appl., 339:1 (2008), 45–57 | DOI
[4] Serier F., “Inverse Problems Inverse spectral problem for singular Ablowitz-Kaup-Newell-Segur operators on [0, 1]”, Inverse Problems, 22:4 (2006), 1457–1484 | DOI
[5] Gorbunov O. B., Shieh C.-T., Yurko V. A., “Dirac system with a singularity in an interior point”, Applicable Analysis, 95:11 (2016), 2397–2414 | DOI
[6] Beals R., Coifman R. R., “Scattering and inverse scattering for first order systems”, Comm. Pure Appl. Math., 37:1 (1984), 39–90 | DOI
[7] Zhou X., “Direct and inverse scattering transforms with arbitrary spectral singularities”, Comm. Pure Appl. Math., 42:7 (1989), 895–938 | DOI
[8] Yurko V. A., “Inverse spectral problems for differential systems on a finite interval”, Results Math., 48:3–4 (2005), 371–386 | DOI
[9] Ignatyev M., “Spectral analysis for differential systems with a singularity”, Results Math., 71:3–4 (2017), 1531–1555 | DOI
[10] Yurko V. A., “On higher-order differential operators with a singular point”, Inverse Problems, 9:4 (1993), 495–502 | DOI
[11] Fedoseev A. E., “Inverse problems for differential equations on the half-line having a singularity in an interior point”, Tamkang Journal of Mathematics, 42:3 (2011), 343–354 | DOI
[12] Beals R., Deift P., Tomei C., Direct and inverse scattering on the line, American Mathematical Society, Providence, Rhod Island, 1988, 209 pp.
[13] Sibuya Yu., “Stokes phenomena”, Bull. Amer. Math. Soc., 83:5 (1977), 1075–1077
[14] Ignatiev M., “Integral transforms connected with differential systems with a singularity”, Tamkang Journal of Mathematics, 50:3 (2019), 253–268 | DOI