Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2019_19_4_a9, author = {M. B. Abrosimov and I. A. Kamil and A. A. Lobov}, title = {Construction of all nonisomorphic minimal vertex extensions of the graph by the method of canonical representatives}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {479--486}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a9/} }
TY - JOUR AU - M. B. Abrosimov AU - I. A. Kamil AU - A. A. Lobov TI - Construction of all nonisomorphic minimal vertex extensions of the graph by the method of canonical representatives JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2019 SP - 479 EP - 486 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a9/ LA - ru ID - ISU_2019_19_4_a9 ER -
%0 Journal Article %A M. B. Abrosimov %A I. A. Kamil %A A. A. Lobov %T Construction of all nonisomorphic minimal vertex extensions of the graph by the method of canonical representatives %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2019 %P 479-486 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a9/ %G ru %F ISU_2019_19_4_a9
M. B. Abrosimov; I. A. Kamil; A. A. Lobov. Construction of all nonisomorphic minimal vertex extensions of the graph by the method of canonical representatives. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 4, pp. 479-486. http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a9/
[1] J. P. Hayes, “A graph model for fault-tolerant computing system”, IEEE Transactions on Computers, C-25:9 (1976), 875–884 | DOI | MR
[2] F. Harary, J. P. Hayes, “Edge fault tolerance in graphs”, Networks, 23 (1993), 135–142 | DOI | MR | Zbl
[3] M. B. Abrosimov, Fault tolerance graph models, Izd-vo Sarat. un-ta, Saratov, 2012, 192 pp. (in Russian)
[4] A. M. Bogomolov, V. N. Salii, Algebraic foundations of the theory of discrete systems, Nauka, M., 1997, 368 pp. (in Russian) | MR
[5] M. B. Abrosimov, “On the complexity of some problems related to graph extensions”, Math. Notes, 88:5 (2010), 619–625 | DOI | DOI | MR | Zbl
[6] M. B. Abrosimov, “Minimal graph extensions”, New Information Technologies in the Study of Discrete Structures (Tomsk, 2000), 59–64 (in Russian)
[7] M. B. Abrosimov, Minimal extension of graphs with 4, 5, 6 and 7 vertices, VINITI 06.09.2000, No 2352-V00, Saratov State University, Saratov, 2000, 26 pp. (in Russian)
[8] G. Brinkmann, “Isomorphism rejection in structure generation programs”, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 51 (2000), 25–38 | DOI | MR | Zbl
[9] B. D. McKay, A. Piperno, “Practical Graph Isomorphism, II”, Journal of Symbolic Computation, 60 (2014), 94–112 | DOI | MR | Zbl
[10] Volga Regional Center for New Information Technologies (in Russian) (accessed 1 May 2019)
[11] Graph World (in Russian) (accessed 1 May 2019)