On the peculiarities of solving the coefficient inverse problem of heat conduction for a two-part layer
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 4, pp. 409-423 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The coefficient inverse problem of thermal conductivity about the determination of the thermophysical characteristics of the functional-gradient part of a two-component layer is posed. The input information is the temperature measurement data on the top face of the layer. After the Laplace transform and dimensioning, the direct problem of heat conduction is solved on the basis of Galerkin projection method. Conversion of transformant on the basis of the theory of residues is carried out. The influence of various laws of changes in the thermophysical characteristics and thickness of the functional-gradient part on the input information was studied. To solve the inverse problem, two approaches are used. The first approach is based on the algebraization of the direct problem using Galerkin projection method. The second approach is a development of the previously developed iterative approach, at each step of which the Fredholm integral equation of the first kind is solved. Computational experiments were carried out to restore various laws of change in thermophysical characteristics. Practical advice on the choice of a time interval for additional information is given. A comparison of two approaches to solving the coefficient inverse problem of heat conduction is made.
@article{ISU_2019_19_4_a4,
     author = {A. O. Vatulyan and S. A. Nesterov},
     title = {On the peculiarities of solving the coefficient inverse problem of~heat conduction for a two-part layer},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {409--423},
     year = {2019},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a4/}
}
TY  - JOUR
AU  - A. O. Vatulyan
AU  - S. A. Nesterov
TI  - On the peculiarities of solving the coefficient inverse problem of heat conduction for a two-part layer
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2019
SP  - 409
EP  - 423
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a4/
LA  - ru
ID  - ISU_2019_19_4_a4
ER  - 
%0 Journal Article
%A A. O. Vatulyan
%A S. A. Nesterov
%T On the peculiarities of solving the coefficient inverse problem of heat conduction for a two-part layer
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2019
%P 409-423
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a4/
%G ru
%F ISU_2019_19_4_a4
A. O. Vatulyan; S. A. Nesterov. On the peculiarities of solving the coefficient inverse problem of heat conduction for a two-part layer. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 4, pp. 409-423. http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a4/

[1] R. C. Wetherhold, S. Seelman, S. Wang, “The use of functionally graded materials to eliminated or control thermal deformation”, Compoites Science and Technology, 56:9 (1996), 1099–1104 | DOI

[2] V. Birman, L. W. Byrd, “Modeling and analysis of functionally graded materials and structures”, Appl. Mech. Rev, 60:5 (2007), 195–216 | DOI

[3] D. K. Agisheva, V. M. Shapovalov, “Engineering Analysis of Non-Steady-State Heat Conduction of Multi-Layer Plate”, Vestnik TGTU, 8:4 (2002), 612–617 (in Russian) | Zbl

[4] V. A. Kudinov, A. E. Kuznetsova, A. V. Eremin, E. V. Kotova, “Analytical solutions of thermoelasticity problems for multilayer structures with variable properties”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 2013, no. 1 (30), 215–221 (in Russian) | DOI

[5] O. M. Alifanov, E. A. Artyukhin, S. V. Rumyantsev, Extreme Methods of Solving Ill-Posed Problems, Nauka, M., 1988, 288 pp. (in Russian) | MR

[6] D. Lesnic, L. Elliot, D. B. Ingham, B. Clennell, R. J. Knioe, “The identification of the piecewise homogeneous thermal conductivity of conductors subjected to a heat flow test”, International Journal of Heat and Mass Transfer, 42:1 (1999), 143–152 | DOI | Zbl

[7] A. V. Penenko, “Discrete-analytic schemes for solving an inverse coefficient heat conduction problem in a layered medium with gradient methods”, Numerical Analysis and Applications, 5:4 (2012), 326–341 | DOI | MR | Zbl

[8] S. A. Lukasievicz, R. Babaei, R. E. Qian, “Detection of material properties in a layered body by means of thermal effects”, J. Thermal Stresses, 26:1 (2003), 13–23 | DOI | MR

[9] B. E. Pobedrya, A. S. Kravchuk, P. A. Arizpe, “Identification of the coefficients in a non-stationary heat conductivity equation”, Computational Continuum Mechanics, 1:4 (2008), 78–87 (in Russian) | DOI

[10] A. M. Denisov, Introduction to the theory of inverse problems, Moscow Univ. Press, M., 1994, 206 pp. (in Russian) | MR

[11] C. Kravaris, J. H. Seinfeld, “Identification of spatially varying parameters in distributed parameters systems by discrete regularization”, J. Math. Analys. Appl., 119 (1986), 128–152 | DOI | MR | Zbl

[12] W. L. Chen, H. M. Chou, Y. C. Yang, “An inverse problem in estimating the space — dependent thermal conductivity of a functionally graded hollow cylinder”, Composites Part B: Engineering, 50 (2013), 112–119 | DOI

[13] S. I. Kabanikhin, A. Hasanov, A. V. Penenko, “A gradient descent method for solving an inverse coefficient heat conduction problem”, Numerical Analysis and Applications, 2008, no. 1, 34–45 | DOI | MR | Zbl

[14] D. N. Hao, Methods for inverse heat conduction problems, Peter Lang Pub. Inc., Frankfurt/Main, 1998, 249 pp. | MR | Zbl

[15] V. Isakov, S. Kindermann, “Identification of the diffusion coefficient in a one dimensional parabolic equation”, Inverse Problems, 16:3 (2000), 665–680 | DOI | MR | Zbl

[16] M. Raudensky, K. A. Woodbary, J. Kral, “Genetic algorithm in solution of inverse heat conduction problems”, Numerical Heat Transfer, Part B: Fundamentals, 28 (1995), 293–306 | DOI

[17] M. H. Xu, J. C. Cheng, S. Y. Chang, “Reconstruction theory of the thermal conductivity depth profiles by the modulated photo reflectance technique”, J. Appl. Phys., 84:2 (2004), 675–682 | DOI

[18] A. O. Vatul'yan, S. A. Nesterov, “A Method of Identifying Thermoelastic Characteristics for Inhomogeneous Bodies”, Journal of Engineering Physics and Thermophysics, 87:1 (2014), 225–232 | DOI | MR

[19] R. Nedin, S. Nesterov, A. Vatulyan, “On an inverse problem for inhomogeneous thermoelastic rod”, International Journal of Solids and Structures, 51:3–4 (2014), 767–773 | DOI

[20] R. Nedin, S. Nesterov, A. Vatulyan, “On reconstruction of thermalphysic characteristics of functionally graded hollow cylinder”, Appl. Math. Model., 40:4 (2016), 2711–2719 | DOI | MR

[21] R. Nedin, S. Nesterov, A. Vatulyan, “Identification of thermal conductivity coefficient and volumetric heat capacity of functionally graded materials”, International Journal of Heat and Mass Transfer, 102 (2016), 213–218 | DOI

[22] A. O. Vatulyan, S. A. Nesterov, “On an Approach to the Solution of the Coefficient Inverse Heat Conduction Problem”, Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 15:1 (2018), 50–60 (in Russian) | DOI

[23] A. O. Vatulyan, Coefficient inverse problems of mechanics, Fizmatlit, M., 2019, 272 pp. (in Russian)

[24] P. G. Danilaev, Coefficient inverse problems for parabolic type equations and their applications, VSP, Utrecht–Boston–Koln–Tokyo, 2001, 115 pp. | MR

[25] T. T. Lam, W. K. Yeung, “Inverse determination of thermal conductivity for one-dimensional problems”, J. Themophys. Heat Transf., 9:2 (1995), 335–344 | DOI | MR

[26] W. K. Yeung, T. T. Lam, “Second-order finite difference approximation for inverse determination of thermal conductivity”, Int. J. Heat Mass Transfer, 39:17 (1996), 3685–3693 | DOI

[27] S. L. Marple, Digital spectral analysis and its applications, Mir, M., 1990, 584 pp. (in Russian)

[28] A. N. Tikhonov, A. V. Goncharskiy, V. V. Stepanov, A. G. Yagola, Numerical methods for solving ill-posed problems, Nauka, M., 1990, 230 pp. (in Russian) | MR