@article{ISU_2019_19_4_a4,
author = {A. O. Vatulyan and S. A. Nesterov},
title = {On the peculiarities of solving the coefficient inverse problem of~heat conduction for a two-part layer},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {409--423},
year = {2019},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a4/}
}
TY - JOUR AU - A. O. Vatulyan AU - S. A. Nesterov TI - On the peculiarities of solving the coefficient inverse problem of heat conduction for a two-part layer JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2019 SP - 409 EP - 423 VL - 19 IS - 4 UR - http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a4/ LA - ru ID - ISU_2019_19_4_a4 ER -
%0 Journal Article %A A. O. Vatulyan %A S. A. Nesterov %T On the peculiarities of solving the coefficient inverse problem of heat conduction for a two-part layer %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2019 %P 409-423 %V 19 %N 4 %U http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a4/ %G ru %F ISU_2019_19_4_a4
A. O. Vatulyan; S. A. Nesterov. On the peculiarities of solving the coefficient inverse problem of heat conduction for a two-part layer. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 4, pp. 409-423. http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a4/
[1] R. C. Wetherhold, S. Seelman, S. Wang, “The use of functionally graded materials to eliminated or control thermal deformation”, Compoites Science and Technology, 56:9 (1996), 1099–1104 | DOI
[2] V. Birman, L. W. Byrd, “Modeling and analysis of functionally graded materials and structures”, Appl. Mech. Rev, 60:5 (2007), 195–216 | DOI
[3] D. K. Agisheva, V. M. Shapovalov, “Engineering Analysis of Non-Steady-State Heat Conduction of Multi-Layer Plate”, Vestnik TGTU, 8:4 (2002), 612–617 (in Russian) | Zbl
[4] V. A. Kudinov, A. E. Kuznetsova, A. V. Eremin, E. V. Kotova, “Analytical solutions of thermoelasticity problems for multilayer structures with variable properties”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 2013, no. 1 (30), 215–221 (in Russian) | DOI
[5] O. M. Alifanov, E. A. Artyukhin, S. V. Rumyantsev, Extreme Methods of Solving Ill-Posed Problems, Nauka, M., 1988, 288 pp. (in Russian) | MR
[6] D. Lesnic, L. Elliot, D. B. Ingham, B. Clennell, R. J. Knioe, “The identification of the piecewise homogeneous thermal conductivity of conductors subjected to a heat flow test”, International Journal of Heat and Mass Transfer, 42:1 (1999), 143–152 | DOI | Zbl
[7] A. V. Penenko, “Discrete-analytic schemes for solving an inverse coefficient heat conduction problem in a layered medium with gradient methods”, Numerical Analysis and Applications, 5:4 (2012), 326–341 | DOI | MR | Zbl
[8] S. A. Lukasievicz, R. Babaei, R. E. Qian, “Detection of material properties in a layered body by means of thermal effects”, J. Thermal Stresses, 26:1 (2003), 13–23 | DOI | MR
[9] B. E. Pobedrya, A. S. Kravchuk, P. A. Arizpe, “Identification of the coefficients in a non-stationary heat conductivity equation”, Computational Continuum Mechanics, 1:4 (2008), 78–87 (in Russian) | DOI
[10] A. M. Denisov, Introduction to the theory of inverse problems, Moscow Univ. Press, M., 1994, 206 pp. (in Russian) | MR
[11] C. Kravaris, J. H. Seinfeld, “Identification of spatially varying parameters in distributed parameters systems by discrete regularization”, J. Math. Analys. Appl., 119 (1986), 128–152 | DOI | MR | Zbl
[12] W. L. Chen, H. M. Chou, Y. C. Yang, “An inverse problem in estimating the space — dependent thermal conductivity of a functionally graded hollow cylinder”, Composites Part B: Engineering, 50 (2013), 112–119 | DOI
[13] S. I. Kabanikhin, A. Hasanov, A. V. Penenko, “A gradient descent method for solving an inverse coefficient heat conduction problem”, Numerical Analysis and Applications, 2008, no. 1, 34–45 | DOI | MR | Zbl
[14] D. N. Hao, Methods for inverse heat conduction problems, Peter Lang Pub. Inc., Frankfurt/Main, 1998, 249 pp. | MR | Zbl
[15] V. Isakov, S. Kindermann, “Identification of the diffusion coefficient in a one dimensional parabolic equation”, Inverse Problems, 16:3 (2000), 665–680 | DOI | MR | Zbl
[16] M. Raudensky, K. A. Woodbary, J. Kral, “Genetic algorithm in solution of inverse heat conduction problems”, Numerical Heat Transfer, Part B: Fundamentals, 28 (1995), 293–306 | DOI
[17] M. H. Xu, J. C. Cheng, S. Y. Chang, “Reconstruction theory of the thermal conductivity depth profiles by the modulated photo reflectance technique”, J. Appl. Phys., 84:2 (2004), 675–682 | DOI
[18] A. O. Vatul'yan, S. A. Nesterov, “A Method of Identifying Thermoelastic Characteristics for Inhomogeneous Bodies”, Journal of Engineering Physics and Thermophysics, 87:1 (2014), 225–232 | DOI | MR
[19] R. Nedin, S. Nesterov, A. Vatulyan, “On an inverse problem for inhomogeneous thermoelastic rod”, International Journal of Solids and Structures, 51:3–4 (2014), 767–773 | DOI
[20] R. Nedin, S. Nesterov, A. Vatulyan, “On reconstruction of thermalphysic characteristics of functionally graded hollow cylinder”, Appl. Math. Model., 40:4 (2016), 2711–2719 | DOI | MR
[21] R. Nedin, S. Nesterov, A. Vatulyan, “Identification of thermal conductivity coefficient and volumetric heat capacity of functionally graded materials”, International Journal of Heat and Mass Transfer, 102 (2016), 213–218 | DOI
[22] A. O. Vatulyan, S. A. Nesterov, “On an Approach to the Solution of the Coefficient Inverse Heat Conduction Problem”, Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 15:1 (2018), 50–60 (in Russian) | DOI
[23] A. O. Vatulyan, Coefficient inverse problems of mechanics, Fizmatlit, M., 2019, 272 pp. (in Russian)
[24] P. G. Danilaev, Coefficient inverse problems for parabolic type equations and their applications, VSP, Utrecht–Boston–Koln–Tokyo, 2001, 115 pp. | MR
[25] T. T. Lam, W. K. Yeung, “Inverse determination of thermal conductivity for one-dimensional problems”, J. Themophys. Heat Transf., 9:2 (1995), 335–344 | DOI | MR
[26] W. K. Yeung, T. T. Lam, “Second-order finite difference approximation for inverse determination of thermal conductivity”, Int. J. Heat Mass Transfer, 39:17 (1996), 3685–3693 | DOI
[27] S. L. Marple, Digital spectral analysis and its applications, Mir, M., 1990, 584 pp. (in Russian)
[28] A. N. Tikhonov, A. V. Goncharskiy, V. V. Stepanov, A. G. Yagola, Numerical methods for solving ill-posed problems, Nauka, M., 1990, 230 pp. (in Russian) | MR