Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2019_19_4_a1, author = {A. N. Sergeev and E. D. Zharinov}, title = {Pieri formulae and specialisation of super {Jacobi} polynomials}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {377--388}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a1/} }
TY - JOUR AU - A. N. Sergeev AU - E. D. Zharinov TI - Pieri formulae and specialisation of super Jacobi polynomials JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2019 SP - 377 EP - 388 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a1/ LA - en ID - ISU_2019_19_4_a1 ER -
%0 Journal Article %A A. N. Sergeev %A E. D. Zharinov %T Pieri formulae and specialisation of super Jacobi polynomials %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2019 %P 377-388 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a1/ %G en %F ISU_2019_19_4_a1
A. N. Sergeev; E. D. Zharinov. Pieri formulae and specialisation of super Jacobi polynomials. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 4, pp. 377-388. http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a1/
[1] O. A. Chalykh, “Macdonald polynomials and algebraic integrability”, Advances in Mathematics, 166:2 (2002), 193–259 | DOI | MR | Zbl
[2] E. Feigin, I. Makedonskyi, “Generalized Weyl modules, alcove paths and Macdonald polynomials”, Selecta Mathematica, 23:4 (2017), 2863–2897 | DOI | MR | Zbl
[3] B. Feigin, M. Jimbo, T. Miwa, E. Mukhin, “A differential ideal of symmetric polynomials spanned by Jack polynomials at $b=-(r-1)/(k+1)$”, International Mathematics Research Notices, 2002:23 (2002), 1223–1237 | DOI | MR | Zbl
[4] I. Macdonald, Symmetric functions and Hall polynomials, Oxford Univ. Press, 1995, 475 pp. | MR | Zbl
[5] M. Noumi, “Macdonald's Symmetric Polynomials as Zonal Spherical Functions on Some Quantum Homogeneous Spaces”, Advances in Mathematics, 123:1 (1996), 16–77 | DOI | MR | Zbl
[6] M. A. Olshanetsky, A. M. Perelomov, “Quantum integrable systems related to Lie algebras”, Physics Reports, 94:6 (1983), 313–404 | DOI | MR
[7] A. N. Sergeev, A. P. Veselov, “$BC_{\infty}$ Calogero–Moser operator and super Jacobi polynomials”, Advances in Mathematics, 222:5 (2009), 1687–1726 | DOI | MR | Zbl
[8] A. N. Sergeev, A. P. Veselov, “Euler characters and super Jacobi polynomials”, Advances in Mathematics, 226:5 (2011), 4286–4315 | DOI | MR | Zbl
[9] V. Serganova, “Characters of irreducible representations of simple Lie superalgebras”, Documenta Mathematica, 1998, 583–593 | MR | Zbl
[10] C. Gruson, V. Serganova, “Cohomology of generalized supergrassmannians and character formulae for basic classical Lie superalgebras”, Proceedings of the London Mathematical Society, 101:3 (2010), 852–892 | DOI | MR | Zbl
[11] Sergeev A. N., “Lie Superalgebras, Calogero–Moser–Sutherland Systems”, Journal of Mathematical Sciences, 235:6 (2018), 756–785 | DOI | MR