@article{ISU_2019_19_3_a0,
author = {V. A. Kyrov},
title = {Analytic embedding of geometries of constant curvature on a pseudosphere},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {246--257},
year = {2019},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a0/}
}
TY - JOUR AU - V. A. Kyrov TI - Analytic embedding of geometries of constant curvature on a pseudosphere JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2019 SP - 246 EP - 257 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a0/ LA - ru ID - ISU_2019_19_3_a0 ER -
V. A. Kyrov. Analytic embedding of geometries of constant curvature on a pseudosphere. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 3, pp. 246-257. http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a0/
[1] Mikhailichenko G. G., “Group and phenomenological symmetries in geometry”, Sib. Math. J., 25:5 (1984), 764–774 | DOI | MR | Zbl
[2] Kyrov V. A., Mikhailichenko G. G., “An analytic method for the embedding of the Euclidean and pseudo-Euclidean geometries”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 23, no. 2, 2017, 167–181 (in Russian) | DOI
[3] Mikhailichenko G. G., The mathematical basics and results of the theory of physical structures, Publishing house of Gorno-Altaisk State University, Gorno-Altaisk, 2016, 297 pp., arXiv: (in Russian) 1602.02795
[4] Ovsyannikov L., Group Analysis of Differential Equation, Academic Press, New York, 1982, 400 pp. | MR
[5] Fichtengolz G. M., A course of differential and integral calculus, v. 2, Fizmatlit, M., 2001, 810 pp. (in Russian)
[6] Dyakonov V., Maple 10/11/12 /13/14 in mathematical calculations, DMS, M., 2014, 640 pp. (in Russian)
[7] Kyrov V. A., “The analytical method for embedding multidimensional pseudo-Euclidean geometries”, Siberian Electronic Mathematical Reports, 15 (2018), 741–758 (in Russian) | DOI | Zbl