Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2019_19_2_a1, author = {V. S. Rykhlov}, title = {Multiple completeness of the root functions of the pencils of differential operators with constant coefficients and splitting boundary conditions}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {134--151}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_2_a1/} }
TY - JOUR AU - V. S. Rykhlov TI - Multiple completeness of the root functions of the pencils of differential operators with constant coefficients and splitting boundary conditions JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2019 SP - 134 EP - 151 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2019_19_2_a1/ LA - ru ID - ISU_2019_19_2_a1 ER -
%0 Journal Article %A V. S. Rykhlov %T Multiple completeness of the root functions of the pencils of differential operators with constant coefficients and splitting boundary conditions %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2019 %P 134-151 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2019_19_2_a1/ %G ru %F ISU_2019_19_2_a1
V. S. Rykhlov. Multiple completeness of the root functions of the pencils of differential operators with constant coefficients and splitting boundary conditions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 2, pp. 134-151. http://geodesic.mathdoc.fr/item/ISU_2019_19_2_a1/
[1] Naymark M. A., Linear Differential Operators, Nauka, M., 1969, 526 pp. (in Russian) | MR
[2] Keldysh M. V., “On the completeness of the eigenfunctions of some classes of non-selfadjoint linear operators”, Russian Math. Surveys, 26:4 (1971), 15–44 | DOI | MR | MR | Zbl
[3] Rykhlov V. S., “On completeness of the root functions of polynomial pencils of ordinary differential operators with constant coefficients”, Taurida Journal of Computer Science Theory and Mathematics, 2015, no. 1(26), 69–86 (in Russian)
[4] Keldysh M. V., “On eigenvalues and eigenfunctions of certain classes of non-selfadjoint equations”, Dokl. Akad. Nauk SSSR, 77:1 (1951), 11–14 (in Russian) | Zbl
[5] Khromov A. P., Finite-dimensional perturbations of Volterra operators, Diss. Dr. Sci. (Phys. and Math.), Novosibirsk, 1973, 242 pp. (in Russian)
[6] Shkalikov A. A., “The completeness of eigenfunctions and associated functions of an ordinary differential operator with irregular-separated boundary conditions”, Funct. Anal. Its Appl., 10:4 (1976), 305–316 | DOI | MR
[7] Freiling G., “Zur Vollständigkeit des Systems der Eigenfunktionen und Hauptfunktionen irregulärer Operator-büschel”, Math. Z., 188 (1984), 55–68 | DOI | MR | Zbl
[8] Tikhomirov S. A., Finite-dimensional perturbations of Volterra integral operators in the space of vectorfunctions, Diss. Cand. Sci. (Phys. and Math.), Saratov, 1987, 126 pp. (in Russian)
[9] Vagabov A. I., Introduction to spectral theory of differential operators, Izd-vo Rost. un-ta, Rostov-on-Don, 1994, 160 pp. (in Russian)
[10] Rykhlov V. S., “On multiple completeness of the root functions of ordinary differential polynomial pencil with constant coefficients”, Proceedings of the Crimean autumn mathematical school-symposium, CMFD, 63, no. 2, 2017, 340–361 (in Russian) | DOI | MR
[11] Rykhlov V. S., “Multiple Completeness of the Root Functions for a Certain Class of Pencils of Ordinary Differential Operators”, Results in Mathematics, 72:1–2 (2017), 281–301 | DOI | MR | Zbl