Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2018_18_4_a3, author = {A. K. Belyaev and A. V. Zelinskaya and D. N. Ivanov and N. F. Morozov and N. V. Naumova and P. E. Tovstik and T. P. Tovstik}, title = {Approximate theory of a laminated anisotropic plate}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {397--411}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_4_a3/} }
TY - JOUR AU - A. K. Belyaev AU - A. V. Zelinskaya AU - D. N. Ivanov AU - N. F. Morozov AU - N. V. Naumova AU - P. E. Tovstik AU - T. P. Tovstik TI - Approximate theory of a laminated anisotropic plate JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2018 SP - 397 EP - 411 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2018_18_4_a3/ LA - ru ID - ISU_2018_18_4_a3 ER -
%0 Journal Article %A A. K. Belyaev %A A. V. Zelinskaya %A D. N. Ivanov %A N. F. Morozov %A N. V. Naumova %A P. E. Tovstik %A T. P. Tovstik %T Approximate theory of a laminated anisotropic plate %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2018 %P 397-411 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2018_18_4_a3/ %G ru %F ISU_2018_18_4_a3
A. K. Belyaev; A. V. Zelinskaya; D. N. Ivanov; N. F. Morozov; N. V. Naumova; P. E. Tovstik; T. P. Tovstik. Approximate theory of a laminated anisotropic plate. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 4, pp. 397-411. http://geodesic.mathdoc.fr/item/ISU_2018_18_4_a3/
[1] Ambartsumyan S. A., General theory of anisotropic shells, Nauka, M., 1974, 448 pp. (in Russian) | MR
[2] Rodionova V. A., Titaev B. A., Chernykh K. F., Applied theory of anisotropic plates and shells, St. Petersburg Univ. Publ., St. Petersburg, 1996, 280 pp. (in Russian)
[3] Agolovyan L. A., Asymptotic theory of anisotropic plates and shells, Nauka, M., 1997, 414 pp. (in Russian)
[4] Reddy J. N., Mechanics of laminated composite plates and shells, CRC Press, 2004, 306 pp.
[5] Vetukov Y., Kuzin A., Krommer M., “Asymptotic splitting of the three-dimensional problem of elasticity for non-homogeneous piezoelectric plates”, Int. J. of Solids and Structures, 48:1 (2011), 12–23 | DOI
[6] Schnieder P., Kienzler R., “An algorithm for the automatization of pseudo reductions of PDE systems arising from the uniform-approximation technique”, Shell-like structures. Non-classical theories and applications, Springer, Berlin, 2011, 377–390 | DOI
[7] Tovstik P. E., Tovstik T. P., “Generalized Timoshenko – Reissner models for beams and plates, strongly heterogeneous in the thickness direction”, ZAMM, 97:3 (2017), 296–308 | DOI | MR
[8] Tovstik P. E., Tovstik T. P., “An elastic plate bending equation of second-order accuracy”, Acta Mech., 228:10 (2017), 3403–3419 | DOI | MR | Zbl
[9] Morozov N. F., Tovstik P. E., Tovstik T. P., “Generalized Timoshenko – Reissner model for a multi-layer plate”, Mechanics of Solids, 51:5 (2016), 527–537 | DOI
[10] Tovstik P. E., Tovstik T. P., “Two-dimensional model of a plate made of an anisotropic inhomogeneous material”, Mechanics of Solids, 52:2 (2017), 144–154 | DOI
[11] Tovstik P. E., Tovstik T. P., Naumova N. V., “Long-wave vibrations and waves in anisotropic beam”, Vestnik SPbSU. Mathematics. Mechanics. Astronomy, 4 (62):2 (2017), 323–335 | DOI | Zbl
[12] Morozov N. F., Belyaev A. K, Tovstik P. E., Tovstik T. P., “Two-dimensional equations of the second order accuracy for a multi-layered plate with orthotropic layers”, Doklady Physics, 63:11 (2018), 471–475 | DOI
[13] Schnieider P., Kienzler R., “A Reissner-type plate theory for monoclinic material derived by extending the uniform-approximation technique by orthogonal tensor decompositions of nth-order gradients”, Meccanica, 52:9 (2017), 2143–2167 | DOI | MR