On the unsymmetrical buckling of shallow spherical shells
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 4, pp. 390-396.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to the numerical study of unsymmetrical buckling of shallow spherical shells and annular plates with varying mechanical characteristics subjected to internal pressure. We suppose that the edge of the shell is clamped but moving freely in the shell’s plane. For the annular plate a roller support is considered for the inner edge of the plate, i.e. the edge that can slide along the figure axes without changing the slope. The unsymmetric part of the solution is sought in terms of multiples of the harmonics of the angular coordinate. A numerical method is employed to obtain the lowest load value, which leads to the appearance of waves in the circumferential direction. The effect of material inhomogeneity on the buckling load is examined. It is shown that if the elasticity modulus decreases away from the center of a plate, the critical pressure for unsymmetric buckling is sufficiently lower than for a plate with constant mechanical properties.
@article{ISU_2018_18_4_a2,
     author = {S. M. Bauer and E. B. Voronkova},
     title = {On the unsymmetrical buckling of shallow spherical shells},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {390--396},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_4_a2/}
}
TY  - JOUR
AU  - S. M. Bauer
AU  - E. B. Voronkova
TI  - On the unsymmetrical buckling of shallow spherical shells
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2018
SP  - 390
EP  - 396
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2018_18_4_a2/
LA  - ru
ID  - ISU_2018_18_4_a2
ER  - 
%0 Journal Article
%A S. M. Bauer
%A E. B. Voronkova
%T On the unsymmetrical buckling of shallow spherical shells
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2018
%P 390-396
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2018_18_4_a2/
%G ru
%F ISU_2018_18_4_a2
S. M. Bauer; E. B. Voronkova. On the unsymmetrical buckling of shallow spherical shells. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 4, pp. 390-396. http://geodesic.mathdoc.fr/item/ISU_2018_18_4_a2/

[1] Panov D. Yu., Feodos'ev V. I., “On the equilibrium and stability loss of shallow shells under large deflection”, J. Appl. Math. Mech., 12:4 (1948), 389–406 (in Russian)

[2] Feodos'ev V. I., “On a method of solution of the nonlinear problems of stability of deformable systems”, J. Appl. Math. Mech., 27:2 (1963), 392–404 | DOI | MR | Zbl

[3] Morozov N. F., “On the existence of a non-symmetric solution in the problem of large deflections of a circular plate with a symmetric load”, Izv. Vyssh. Uchebn. Zaved. Mat., 1961, no. 2, 126–129 (in Russian) | Zbl

[4] Piechocki W. J., “On the non-linear theory of thin elastic spherical shells”, Arch. Mech., 21 (1969), 81–101 | MR | Zbl

[5] Nai-Chien Huang, “Unsymmetrical buckling of thin shallow spherical shells”, J. Appl. Mech., 31 (1964), 447–457 | DOI | MR

[6] Cheo L. S., Reiss E. L., “Unsymmetrical wrinkling of circular plates”, Quart. Appl. Math., 31 (1971), 75–91 | DOI | MR

[7] Bauer S. M., Voronkova E. B., “Models of shells and plates in the problems of ophthalmology”, Vestnik St. Petersburg University: Mathematics, 47:3 (2014), 123–139 | DOI | MR | Zbl

[8] Bauer S. M., Voronkova E. B., “On unsymmetrical buckling of circular plates under normal pressure”, Vestnik St. Petersburg University. Ser. 1, 2012, no. 1, 80–85 (in Russian)

[9] Coleman D. J., Trokel S., “Direct-recorded intraocular pressure variations in a human subject”, Arch Ophthalmol., 82:5 (1969), 637–640 | DOI

[10] Nesterov A. P., “Basic principles of open angle glaucoma diagnostic”, Vestnik of ophtalmology, 1998, no. 2, 3–6 (in Russian)