@article{ISU_2018_18_3_a7,
author = {V. A. Yurko},
title = {On inverse problem for differential operators with deviating argument},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {328--333},
year = {2018},
volume = {18},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a7/}
}
TY - JOUR AU - V. A. Yurko TI - On inverse problem for differential operators with deviating argument JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2018 SP - 328 EP - 333 VL - 18 IS - 3 UR - http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a7/ LA - en ID - ISU_2018_18_3_a7 ER -
V. A. Yurko. On inverse problem for differential operators with deviating argument. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 3, pp. 328-333. http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a7/
[1] Hale J., Theory of functional-differential equations, Springer-Verlag, New York, 1977, 420 pp. | MR | Zbl
[2] Freiling G., Yurko V., Inverse Sturm–Liouville Problems and Their Applications, NOVA Science Publishers, New York, 2001, 305 pp. | MR | Zbl
[3] Yurko V., Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002, 316 pp. | MR | Zbl
[4] Freiling G., Yurko V. Inverse problems for Sturm–Liouville differential operators with a constant delay, Appl. Math. Lett., 25:11 (2012), 1999–2004 | DOI | MR | Zbl
[5] Vladičić V., Pikula M., “An inverse problem for Sturm–Liouville-type differential equation with a constant delay”, Sarajevo J. Math., 12(24):1 (2016), 83–88 | DOI | MR
[6] Yurko V., Buterin S., Pikula M., “Sturm–Liouville differential operators with deviating argument”, Tamkang J. Math., 48:1 (2017), 61–71 | DOI | MR | Zbl
[7] Buterin S., Yurko V., “An inverse spectral problem for Sturm–Liouville operators with a large constant delay”, Anal. Math. Phys., 2017, 1–11 | DOI