On inverse problem for differential operators with deviating argument
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 3, pp. 328-333.

Voir la notice de l'article provenant de la source Math-Net.Ru

Second-order functional differential operators with a constant delay are considered. Properties of their spectral characteristics are obtained, and a nonlinear inverse spectral problem is studied, which consists in constructing operators from their spectra. We establish the uniqueness and develop a constructive procedure for solution of the inverse problem.
@article{ISU_2018_18_3_a7,
     author = {V. A. Yurko},
     title = {On inverse problem for differential operators with deviating argument},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {328--333},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a7/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - On inverse problem for differential operators with deviating argument
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2018
SP  - 328
EP  - 333
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a7/
LA  - en
ID  - ISU_2018_18_3_a7
ER  - 
%0 Journal Article
%A V. A. Yurko
%T On inverse problem for differential operators with deviating argument
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2018
%P 328-333
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a7/
%G en
%F ISU_2018_18_3_a7
V. A. Yurko. On inverse problem for differential operators with deviating argument. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 3, pp. 328-333. http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a7/

[1] Hale J., Theory of functional-differential equations, Springer-Verlag, New York, 1977, 420 pp. | MR | Zbl

[2] Freiling G., Yurko V., Inverse Sturm–Liouville Problems and Their Applications, NOVA Science Publishers, New York, 2001, 305 pp. | MR | Zbl

[3] Yurko V., Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002, 316 pp. | MR | Zbl

[4] Freiling G., Yurko V. Inverse problems for Sturm–Liouville differential operators with a constant delay, Appl. Math. Lett., 25:11 (2012), 1999–2004 | DOI | MR | Zbl

[5] Vladičić V., Pikula M., “An inverse problem for Sturm–Liouville-type differential equation with a constant delay”, Sarajevo J. Math., 12(24):1 (2016), 83–88 | DOI | MR

[6] Yurko V., Buterin S., Pikula M., “Sturm–Liouville differential operators with deviating argument”, Tamkang J. Math., 48:1 (2017), 61–71 | DOI | MR | Zbl

[7] Buterin S., Yurko V., “An inverse spectral problem for Sturm–Liouville operators with a large constant delay”, Anal. Math. Phys., 2017, 1–11 | DOI