Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2018_18_3_a0, author = {Vu Nguyen Son Tung}, title = {Special examples of superstable semigroups and their application in the inverse problems theory}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {252--262}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a0/} }
TY - JOUR AU - Vu Nguyen Son Tung TI - Special examples of superstable semigroups and their application in the inverse problems theory JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2018 SP - 252 EP - 262 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a0/ LA - ru ID - ISU_2018_18_3_a0 ER -
%0 Journal Article %A Vu Nguyen Son Tung %T Special examples of superstable semigroups and their application in the inverse problems theory %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2018 %P 252-262 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a0/ %G ru %F ISU_2018_18_3_a0
Vu Nguyen Son Tung. Special examples of superstable semigroups and their application in the inverse problems theory. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 3, pp. 252-262. http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a0/
[1] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, N.Y.–Basel, 2000, 723 pp. | MR | Zbl
[2] Prilepko A. I., Tikhonov I. V, “Recovery of the nonhomogeneous term in an abstract evolution equation”, Russian Acad. Sci. Izv. Math., 44:2 (1995), 373–394 | DOI | MR | Zbl
[3] Tikhonov I. V., Eidelman Yu. S, “Problems on correctness of ordinary and inverse problems for evolutionary equations of a special form”, Math. Notes, 56:2 (1994), 830–839 | DOI | MR | Zbl
[4] Tikhonov I. V., Vu Nguyen Son Tung, “The solvability of the inverse problem for the evolution equation with a superstable semigroup”, RUDN Journal of MIPh, 26:2 (2018), 103–118 (in Russian) | DOI
[5] Balakrishnan A. V., “On superstability of semigroups”, Systems Modelling and Optimization, Proceedings of the 18th IFIP Conference, Chapman Hall/CRC Research Notes in Mathematics, CRC Press, 1999, 12–19 | MR | Zbl
[6] Balakrishnan A. V., “Superstability of systems”, Appl. Math. and Comput., 164:2 (2005), 321–326 | DOI | MR | Zbl
[7] Jian-Hua Chen, Wen-Ying Lu, “Perturbation of nilpotent semigroups and application to heat exchanger equations”, Appl. Math. Letters, 24 (2011), 1698–1701 | DOI | MR | Zbl
[8] Creutz D., Mazo M., Preda C., Superstability and finite time extinction for $C_0$-Semigroups, 12 pp., arXiv: (accessed: 24.12.2013) 0907.4812v4 [math.FA]
[9] Kmit I., Lyul'ko N., Perturbations of superstable linear hyperbolic systems, 29 pp., arXiv: (accessed: 09.01.2018) 1605.04703v3 [math.AP] | MR
[10] Krein S. G, Linear differential equations in Banach space, Nauka, M., 1967, 464 pp.
[11] Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer, N.Y., 1983, 279 pp. | MR | Zbl
[12] Engel K.-J., Nagel R., One-parameter semigroups for linear evolution equations, Springer, N.Y., 2000, 586 pp. | MR | Zbl
[13] Iskenderov A. D., Tagiev R. G, “The inverse problem on the determination of right sides of evolution equations in Banach space”, Nauchn. Tr., Azerb. Gos. Univ., 1, 1979, 51–56 | Zbl
[14] Rundell W., “Determination of an unknown non-homogeneous term in a linear partial differential equation from overspecified boundary data”, Appl. Anal., 10:3 (1980), 231–242 | DOI | MR | Zbl
[15] Eidelman Yu. S, Boundary value problems for differential equations with parameters, Thesis Diss. Cand. Sci. (Phys. and Math.), Voronez, 1984, 16 pp.
[16] Orlovsky D. G, “On a problem of determining the parameter of an evolution equation”, Differ. Equ., 26:9 (1990), 1201–1207 | MR
[17] Tikhonov I. V., Vu Nguyen Son Tung, “Formulas for an explicit solution of the model nonlocal problem associated with the ordinary transport equation”, Yakutian Math. J., 24:1 (2017), 57–73 | DOI | Zbl