The motion of propping agent in an opening crack in hydraulic fracturing plast
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 2, pp. 217-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present study the process of hydraulic fracture formation when pumping a viscous fluid with an admixture of particles into a well is considered. A model of a crack propagation taking account of the loss of liquid on seepage into a porous medium and the sedimentation of suspended particles under the action of gravity is developed. Detailed analysis of the sedimentation growth caused by leakage of hydraulic fracturing fluid into a porous medium is carried out. It is shown that the presence of particles has a significant effect on the process of crack opening. The crack growth in the presence of particles is limited, its final state depends on the composition of the mixture, injection method, inlet pressure, the volume content of the particles, the volume of the rim (pure fracturing fluid without admixture). All these factors are taken into consideration in the proposed model based on special dimensionless forms of the equations of motion. The results make it possible to estimate the crack residual and choose the technological parameters to provide the desired state of the ruptured formation.
@article{ISU_2018_18_2_a7,
     author = {A. V. Tatosov and A. S. Shlyapkin},
     title = {The motion of propping agent in an opening crack in hydraulic fracturing plast},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {217--226},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a7/}
}
TY  - JOUR
AU  - A. V. Tatosov
AU  - A. S. Shlyapkin
TI  - The motion of propping agent in an opening crack in hydraulic fracturing plast
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2018
SP  - 217
EP  - 226
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a7/
LA  - ru
ID  - ISU_2018_18_2_a7
ER  - 
%0 Journal Article
%A A. V. Tatosov
%A A. S. Shlyapkin
%T The motion of propping agent in an opening crack in hydraulic fracturing plast
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2018
%P 217-226
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a7/
%G ru
%F ISU_2018_18_2_a7
A. V. Tatosov; A. S. Shlyapkin. The motion of propping agent in an opening crack in hydraulic fracturing plast. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 2, pp. 217-226. http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a7/

[1] Perkins T. K., Kern L. R., “Widths of hydraulic fractures”, Journal of Petroleum Technology, 13:09 (1961), SPE 89, 937–949 | DOI

[2] Nordgren R. P., “Propagation of a vertical hydraulic fracture”, Society of Petroleum Engineers, 12:04 (1972), 7834, 306–314 | DOI

[3] Zheltov Yu. P., Khristianovich S. A., “On hydraulic fracturing of oil reservoirs”, Proc. USSR Acad. Sci. Sect. Tech. Sci., 1955, no. 5, 3–41

[4] Esipov D. V., Kuranakov D. S., Lapin V. N., Chernyi S. G., “Mathematical models of hydraulic fracturing”, Computational technologies, 19:2 (2014), 33–61

[5] Mobbs A. T., Hammond P. S., “Computer Simulations of Proppant Transport in a Hydraulic Fracture”, SPE Production and Facilities, 16:2 (2001), 112–121 | DOI

[6] Dontsov E. V., Peirce A. P., “Slurry flow, gravitational settling and a proppant transport model for hydraulic fractures”, Journal of Fluid Mechanics, 760 (2014), 567–590 | DOI | MR

[7] Novatsky B., Theory of Elasticity, Mir, M., 1975, 256 pp. | MR

[8] Ivashnev O. E., Smirnov N. N., “Formation of a hydraulic fracture in a porous medium”, Vestnik Moskovskogo Universiteta. Ser. 1. Matematika. Mekhanika, 2003, no. 6, 28–36

[9] Smirnov N. N., Tagirova V. P., “Analysis of power-law self-similar solutions of the problem of fracture formation”, Vestnik Moskovskogo Universiteta. Ser. 1. Matematika. Mekhanika, 2007, no. 1, 48–54

[10] Tatosov A. V., “Model of crack filling in hydraulic fracturing”, Computational technologies, 10:6 (2005), 91–101

[11] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Regimes with peaking in problems for quasilinear parabolic equations, Nauka, M., 1987, 480 pp. | MR